Жидкостные лазеры используются в целом реже, чем газовые либо твердотельные лазеры, однако с точки зрения некоторых приложений они обладают рядом уникальных свойств. Параметры излучения твердотельного лазера в значительной степени зависят от оптических качеств используемого кристалла. Неоднородности кристаллической структуры могут серьезно ограничивать когерентность лазера. Кристаллы постоянно подвержены разрушениям; концентрация активирующих ионов задается в процессе изготовления лазера и является определенной величиной для данного кристалла. С этими конкретными трудностями не приходится иметь дело при работе с газовыми лазерами, но зато эти лазеры имеют заметно меньшую концентрацию активного вещества из-за низкой концентрации атомов в газе. Преимущества жидкостных лазеров заключаются в том, что они имеют значительно более высокую концентрацию активных атомов, которую легко можно изменять; кроме того, активная среда является дешевой и относительно мало подверженной повреждениям. В то же время жидкостные лазеры не столь громоздки, как газовые системы, и проще в эксплуатации.
Из расчетных типов жидкостных лазеров наибольшее значение имеют лазеры на органических красителях. Эффект генерации раствора красителя впервые обнаружили в 1965 г. П. Сорокин с сотр. в лаборатории фирмы IBM в ходе исследования ряда красителей, используемых в пассивных затворах для рубиновых лазеров. Наиболее существенным преимуществом лазера на красителях над всеми рассмотренными здесь лазерами является возможность плавно перестраивать частоту излучения в пределах значительного спектрального диапазона. Типичный газовый или твердотельный лазер можно перестраивать только внутри очень узкого диапазона (практически лишь в пределах ширины кривой усиления). Хотя имеющиеся газовые и твердотельные лазеры излучают большое число дискретных длин волн в диапазоне, простирающемся от ближней ультрафиолетовой до дальней инфракрасной области спектра, все же остаются значительные участки оптического диапазона, в которых отсутствуют линии генерации этих лазеров.
Перестраиваемый источник узкополосного излучения оптического. диапазона при высокой когерентности этого излучения желательно иметь во многих приложениях, таких, как спектроскопия, изучение молекулярной диссоциации и химических реакций, а также разделение изотопов.
|