Лучистая энергия

Мы нашли связь между функциями испускательной способности и плотности электромагнитной энергии. Но представляется совершенно неясным, каким способом можно было бы найти вид этих функций. Здесь нужны какие-то дополнительные гипотезы о способе существования, что ли, лучистой, волновой энергии. Ясно, что такое описание распределения энергии по частотам (это функции частоты!) при определенной температуре должно быть вероятностным, но в основе должно предположить существование какой-то функции распределения, подобно тому, как мы в свое время нашли вид функции распределения Максвелла для молекул (атомов).

;

Z

Y

d

b

0 a X

Такой гипотезой явилось предположение, что лучистая энергия могла бы существовать в виде стоячих волн. Стоячими волнами мы ранее немного занимались, но теперь нам надо исследовать этот вопрос детальнее.

Пусть у нас имеется полость в виде прямоугольного параллелепипеда со сторонами a,b,c.

Условием существования стоячей волны вида

является выполнение условий

.

Речь, разумеется, идет о плоской волне, и только при выполнении этих условий любой луч волны окажется замкнутым. Причем в любую “стартовую” точку волна будет возвращаться с неизменной фазой.

Теперь можно говорить о некотором распределении стоячих волн по оси частот - они могут принимать лишь некоторые дискретные значения.

Перейдем в декартово пространство, в котором по осям отложены значения составляющих векторов . Концы векторов, удовлетворяющих условию стоячей волны, будут иметь координаты . Это позволяет нам говорить о плотности таких точек в k

- пространстве: поскольку , элементарный объем на одну точку (конец вектора ) . Равная обратной величине элементарного объема, плотность точек Nkв k

- пространстве оказывается величиной постоянной: .

Собственно, нас интересуют количества векторов в модулем от k

до k

+D

k

. Чтобы подсчитать это количество, выберем элементарный объем в k

- пространстве в виде тонкого шарового слоя радиуса k

и толщиной D

k

и умножим его на плотность точек:

.

Теперь нам надо проделать еще такие операции. Во-первых, перейдем от волновых векторов k

к частотам w

: . Затем нам надо умножить полученное число на 2

, поскольку имеется два взаимно перпендикулярных направления колебаний - это будут разные стоячие волны. Тогда на единицу объема мы получаем такое количество волн с частотой w

:

.

Y

kX<0 kX>0

kY>0

X

kY<0

Теперь попробуем понять, что мы, собственно, получили. Это выражение дает нам число волн с частотой w

в единице объема. Но это еще не количество стоячих волн. При каждом отражении волна изменяет направление распространения, но это остается та же волна с частотой w

. При нашем же подсчете они считались различными волнами - с определенным модулем волнового числа k

и независимо от направления вектора . Поэтому полученное количество волн нам надо разделить на 8

и вот почему.

При каждом отражении изменяется знак одной из проекций вектора . Как видно из рисунка, изменение знаков проекций kX

и kYдает четыре возможные направления вектора . Но остается еще возможность изменения знака kZ

Перейти на страницу: 1 2

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.