Здесь мы проведем некоторые подсчеты, повторяющие проведенные при выводе формулы Планка. Прежде всего запишем выражения для количества стоячих волн с энергией и для их энергий:
; .
Средняя энергия
.
Введя переменную , перепишем это выражение в виде
.
При преобразованиях мы воспользовались выражением для суммы членов бесконечной геометрической прогрессии. Наконец, выполнив дифференцирование, получаем нужное выражение:
.
Подсчитаем теперь тепловую энергию моля кристаллического вещества. При выводе формулы Планка не существует ограничения на максимальную частоту w
. В случае же кристалла не имеет смысла говорить о волне, длина которой меньше расстояния между атомами. А говоря иначе, количество стоячих волн должно равняться числу степеней свободы 3NA
. Это позволяет определить максимальное значение частоты (Vмоль-
объем моля вещества):
;
.
Для подсчета тепловой энергии, запасенной молем вещества, нам надо взять интеграл:
.
При высокой температуре и экспоненту в знаменателе подынтегрального выражения можно разложить в ряд, ограничившись первым членом разложения: . Кроме того, куб скорости в знаменателе можно представить в виде:
.
Тогда для ET
мы получим:
.
Таким образом, при высокой температуре молярная теплоемкость кристалла ,
и мы получаем закон Дюлонга и Пти. Как должно быть ясно из сказанного, это выражение справедливо лишь при достаточно высокой температуре, когда возможно разложение экспоненты в ряд с ограниченным количеством членов разложения.
Анализировать поведение теплоемкости при низких температурах мы не будем. Отметим только, что в качестве “граничной” температуры вводится так называемая температура Дебая q
, которая определяется условием: . При температурах необходимо учитывать эффекты квантования энергии.
|