Y Y’
K K’
v
O O’ X,X’ |
До сих пор у нас не возникало необходимости переходить из одной системы отсчета в другую при больших скоростях относительного движения этих систем. Потому мы пользовались преобразования Галилея, не учитывающими релятивистские эффекты. Но теперь нам понадобятся преобразования Лоренца. При движении со скоростью v
некоторой системы K’
вдоль оси OX
“неподвижной” системы Kони имеют вид: ; ;
; .
Мы выписали прямые и обратные преобразования. Отмеченные штрихами величины относятся к движущейся системе отсчета.
Чтобы немного привыкнуть к этим преобразованиям, решим две частные задачи, не имеющие прямого отношения к волнам.
Рассмотрим движение некоторого стержня вдоль оси OX
. Свяжем с ним движущуюся систему отсчета K’
. Его длина в этой системе отсчета . Заметим, что, поскольку стержень в этой системе неподвижен, координаты его концов могут быть определены в произвольные моменты времени - координаты не изменяются во времени. Обратите внимание на это существенное обстоятельство.
Получим теперь выражение для длины стержня в неподвижной системе отсчета. Запишем такое выражение:
.
Чтобы определить длину движущегося стержня в неподвижной системе отсчета, нам следует определить координаты его концов в один и тот же момент времени, т.е. положить . При этом условии - длина стержня в неподвижной системе отсчета. Таким образом, длина движущегося стержня оказывается меньше его “собственной” длины:
.
В таком случае говорят о лоренцовом сокращении длины движущегося стержня.
Предположим теперь, что в неподвижной системе отсчета произошли два события, разделенные промежутком времени . Например, это может быть промежуток времени между рождением и распадом некоторой нестабильной частицы. Считая, что частица движется со скоростью v
, свяжем с ней систему отсчета. В этой системе промежуток времени между событиями, которые, заметим, в ней произошли в одной и той же точке с координатой x’
, будет:
;
.
В таком случае говорят о замедлении хода часов в движущейся системе отсчета.
Это замедление хода часов (или хода времени) приводит к любопытному эффекту. Исследуя некоторую нестабильную частицу, мы можем измерить ее “время жизни” t
¢
которое является характеристикой частицы, а не системы отсчета. Если такая частица после рождения движется со скоростью v
, мы можем подумать, что до момента распада она пройдет путь v
t
¢
- от рождения и до распада в связанной с частицей системе отсчета пройдет время t
|