Ну, что тут означает эпитет «ограниченный»? То, что заряд локализован в конечной области пространства, то есть мы можем охватить этот заряд замкнутой поверхностью такой, что вне этой поверхности заряда нет. Понятно, что с точки зрения физики это не ограничение, ну, и, действительно, мы имеем дело практически всегда только с ограниченными распределениями, нет такой ситуации, чтобы заряд был размазан по всей вселенной, он концентрируется в определённых областях.
Вот такая проблема: область занята зарядом, по этой области размазан электрический заряд, мы должны полностью охарактеризовать этот заряд и найти создаваемое им поле. Что значит полностью охарактеризовать распределение заряда? Возьмём элемент объёма , положение этого элемента задаётся радиус-вектором , в этом элементе сидит заряд . Для того, чтобы найти поле, нам нужно знать заряд каждого элемента объёма, это означает, что нам нужно знать плотность заряда в каждой точке. Вот эта функция предъявлена, она для нашей цели исчерпывающе характеризует распределение заряда, больше ничего знать не надо.
Пусть нас интересует поле в точке . А дальше принцип суперпозиции. Мы можем считать заряд dq, который сидит в этом элементе объёма, точечным. Мы можем написать сразу выражение для потенциала, который создаёт этот элемент в этой точке: , это потенциал, создаваемый элементом в точке . А теперь понятно, что полный потенциал в этой точке мы найдём суммированием по всем элементам. Ну, и напишем эту сумму как интеграл: .
Этот рецепт срабатывает железно для любого предъявленного распределения заряда, никаких проблем, кроме вычисления интеграла, нет, но компьютер такую сумму посчитает. Напряжённость поля находится: . Когда интеграл вычислен, то напряжённость находится просто дифференцированием.
|