Заодно познакомимся со стандартным приёмом получения приближённых решений. Проблема такая опять. Имеем распределение заряда, мы теперь попробуем получить более точную формулу, не так радикально, а, вот, если уйти достаточно далеко, но ещё, когда это распределение не выглядит совсем точечным, хотим получить более точное приближение. Пусть у нас L – характерный линейный размер системы, будем считать, что , это можно оформить иначе: , это в пределах распределения, – это малая величина.
А теперь вот чем займёмся: .
Стандартный приём: когда у вас имеется сумма, в которой одно слагаемое большое, а другие маленькие, то всегда есть смысл вынести большое слагаемое за скобку и получить в сумме единицу плюс какие-то маленькие добавки, которая разлагается в ряд.
Пишем дальше: . Мы избавились от корня, ну, потому что . А теперь, добывши этот результат, займёмся формулой для потенциала: +. Тогда мы получаем такую формулу для потенциала:
.
Если бы мы произвели разложение поля в точке, вот я там выкинул , если ещё взять следующие поправки, то тут пошло бы слагаемое, которое характеризовало бы не дипольный момент, а, так называемый, квадрупольный момент и дальше моменты более высоких порядков. Вот сама такая процедура называется разложением по мультиполям. Мультиполь нулевого порядкам – это просто заряд, дальше, мультиполь первого порядка – это дипольный момент, дальше там квадрупольный момент. Дипольный момент задаётся вектором, квадрупольный бы момент задавался квадратной матрицей из девяти элементов, но вследствие симметрии там было бы только шесть отличных от нуля и так далее.
Это мы нашли потенциал, ну, а теперь поупражняемся в нахождении напряжённости. – это даст напряжённость поля точечного заряда, вычислим . = == = .
Тогда для напряжённости поля получаем:
.
|