Пусть вдоль оси OZ расположен бесконечно длинный проводник, по которому течёт ток с силой Á. А сила тока это что такое? , - заряд, который пересекает поверхность S за время . Система обладает осевой симметрией. Если мы введём цилиндрические координаты r, j, z, то цилиндрическая симметрия означает, что и, кроме того, , при смещении вдоль оси OZ, мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия и . Это означает вот что: силовые линии магнитного поля – окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле.
Пусть у нас это проводник.
Вот ортогональная плоскость,
вот окружность радиуса r,
я возьму тут касательный вектор, вектор, направленный вдоль j, касательный вектор к окружности.
Тогда, , где .
В качестве замкнутого контура выбираем окружность радиуса r=const. Пишем тогда , сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности. , где Á – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль: . Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величина В убывает как при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника.
Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии (R – радиус кривизны проводника), будет справедлива эта формула.
|