Прохождение частицы через потенциальный барьер. Туннельный эффект

Мы нашли одно частное решение для свободной частицы, когда не было потенциальной энергии, рассмотрим сейчас задачу чуть более сложную. Пусть потенциальная энергия имеет вид (рис.6.1, а).

Физика такая: в области x<0 сила, действующая на частицу, ноль, при x>0 сила, действующая на частицу тоже ноль (потенциальная энергия постоянна), но зато в окрестности нуля действует сила . График силы изображён на рисунке 6.1, б. Для такой ступеньки производная бесконечно велика, это означает, что в окрестности нуля действует бесконечно большая сила, направленная влево, но, хотя сила бесконечно большая, работа против этой силы тем не менее конечна.

Наглядно: вот стоит абсолютно твёрдая стенка, абсолютная твёрдость означает, что при столкновении со стенкой отбрасывающая сила бесконечно велика, но тем не менее стенка пробиваема: если налетающая частица имеет кинетическую энергию больше некоторой, то она эту стенку пробивает. Работа по преодолению этой силы тем не менее конечна. Это будет изображаться таким потенциальным барьером.

Реально это можно реализовать для электронов. Имеем две металлические стенки, к этим стенкам приложена разность потенциалов. Электрон попадает в область электрического поля между стенками и испытывает силу, выталкивающую его обратно. Теперь, выдерживая постоянное напряжение, будем сближать эти стенки. Напряжённость электрического поля стремится к бесконечности, но работа по пробиванию этого конденсатора остаётся конечной. Этот барьер для электронов будет реализован вот таким образом.

А теперь мы будем рассматривать стационарное состояние. Высота барьера U0, пишем уравнение Шрёдингера для стационарных состояний:

Как нам затолкать эту разрывную функцию U(x) туда? А просто мы сейчас разделим всё пространство на две части, напишем это уравнение для области x<0 и потом напишем это уравнение для области x>0, найдём эти решения, а потом их будем сшивать в точке x0=0, чтоб получить одну функцию (волновая функция должна быть непрерывной).

(8.1)

(8.2)

Решение уравнения (8.1) пишем немедленно (это уравнение колебаний):

. Это решение в области x<0.

Уравнение в области в случае E>U0 имеет решение такое же как при x<0, а если , то это уравнение другого типа, оно имеет другое решение.

Мы рассматриваем первый случай, когда энергия частицы больше, чем напряжение в цепи: и E>U0.

Эти решения надо состыковать. Функция должна быть это непрерывной:

(8.3)

На волновую функцию накладывается ещё одно требование – непрерывность первой производной (физическую основу этих требований мы ещё увидим):

(8.4)

У нас четыре константы, а мы имеем два уравнения. Математик, конечно, озадачился бы, но мы должны интерпретировать результат. Прежде всего смотрим на функцию u1: это волна, бегущая вправо вдоль оси x, она описывает налетающие частицы, это волна, бегущая влево вдоль оси x в области x<0, это волна может быть отразившейся, мы пока оставим это дело. Константа C1 описывает падающую волну, она соответствует амплитуде падающей волны, то есть, в конечном счёте, интенсивности налетающего пучка, значит, C1 заданная константа, C2 подлежит определению. Смотрим на решение u2 в области : это волна, идущая вправо, она описывает пучок, прошедший через барьер, это волна, идущая влево, физически ей неоткуда взяться, поэтому полагаем C4=0. Теперь мы имеем константу C1 (задаём сами), а C2 и C3 должны определить. У нас есть два условия, напишем эти условия: формула (8.3) в нуле даёт C1+ C2= C3, формула (8.4) даёт . Мы получим:

Перейти на страницу: 1 2 3

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.