Оператор энергии

У нас был один из постулатов, что существует оператор , который называется гамильтонианом и который определяет динамику системы, то есть изменение вектора состояния за единицу времени получается как результат действия оператора на вектор состояния в данный момент времени:

Это аналог Второго закона Ньютона. Этот оператор что такое?

Для частицы в потенциальном поле сил гамильтониан H – это полная энергия частицы, выраженная через координаты и импульс: . Тогда оператор по нашему рецепту будет:

Задача на собственные векторы оператора энергии ставится так: оператор действует на вектор , даёт число , : . В координатном представлении векторы задаются функциями : . Для частицы в связанном состоянии спектр собственных значений оператора энергии дискретен (энергия в этом случае квантуется), в несвязанном состоянии спектр собственных значений непрерывен (энергия не квантуется). То есть, если частица может уйти на бесконечность, то любое действительное число может представлять её энергию, а если не может уйти на бесконечность, то тогда энергия может принимать определённые значения. Как найти эти собственные значения и собственные векторы?

В координатном представлении оператор изобразится так:

Тогда уравнение на собственные значения перепишется в координатном представлении таким образом: . Сейчас мы его перепишем так: . Это уже знакомое уравнение, это уравнение Шредингера для стационарных состояний. Это означает то, что мы с вами делали, мы решали задачу на собственные значения оператора энергии.

Для свободной частицы должно оказаться, что спектр собственных значений непрерывен, проверим. Для свободной частицы никакой потенциальной энергии нет: . Тогда задача на собственные векторы приводит к такому уравнению: (я не пишу индексы, потому что на самом деле они и не появятся) или , обозначим , тогда легко убедиться, что функция является решением этого уравнения.1)

Собственные значения нумеруются вектором , мы можем написать так: , или в координатном представлении . Мораль такая: задайте любой вектор , этому вектору будет отвечать функция с таким собственным значением: . И, действительно, мы видим, что спектр собственных значений непрерывен, потому что вектор любой.

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.