Физическая проблема такая: энергия квантуется, координата, как мы видели, не квантуется, спрашивается, квантуется ли импульс (то есть в результате измерений может получаться любое число или какие-то дискретные величины)?1)
В координатном представлении оператор импульса есть: . Уравнение на собственные векторы выглядит так: , в координатном представлении вектор задаётся некоторой функцией и должен изобразиться так: , а уравнение на собственные векторы в координатном представлении сводится к такому , и в компонентах: или . Поскольку это функция от x только, то можно писать прямую производную:
Решение находится сразу: . Общий результат такой:
Это собственная функция оператора импульса, отвечающая собственному значению . Можно рассматривать это как наводящие соображения. Вернёмся к уравнению .
Утверждение.
Функция является решением этого уравнения.
Доказательство. Подставляя эту функцию в уравнение, мы получаем:
Функция является собственной функцией оператора импульса, соответствующей собственному значению .
Отсюда видно, что собственным значением оператора импульса может быть любой вектор.
Если операторы двух переменных коммутируют, то эти переменные могут быть заданы и измерены одновременно, а операторы имеют одинаковые собственные векторы, ну и поэтому собственные значения могут быть заданы одновременно. То, что нельзя одновременно задавать координату и импульс, мы обсуждали, можно ли одновременно задать координату и энергию? Ответ зависит от того, коммутируют или нет операторы координаты и энергии. Ответ такой: оператор энергии , очевидно, что операторы и не коммутируют, потому что оператор со вторым слагаемым прокоммутирует, а с первым нет (это следует из коммутационного соотношения). Это означает, что координату и энергию задать вместе нельзя никогда, то есть не может быть утверждений, что частица находится в некоторой точке пространства и имеет такую-то полную энергию (они не коммутируют). Другой вопрос: импульс и энергию задать можно или нет? Вроде бы ответ напрашивается, что в коммутационное соотношение координата и импульс входят симметрично, но оператор энергии координата и импульс входят несимметрично, . Например, для свободной частицы, когда , оператор импульса с оператором энергии прокоммутирует. И, стало быть, импульс и энергия свободной частицы могут быть измерены одновременно. И действительно, это мы уже видели, а функция является одновременно собственной функцией оператора импульса и энергии, собственные значения связаны так: , . Но если частица не свободна, то оператор импульса не коммутирует с оператором энергии.
11
Мы нашли, что , и мы нашли вид этого вектора в координатном представлении: .1) Векторы могут быть выбраны сами в качестве базиса, в котором можно выражать все другие векторы, это называется импульсное представление.
|