Момент импульса (собственные векторы, собственные значения)

Мы разобрались с оператором координаты, с оператором импульса, с оператором энергии, есть ещё одна переменная – момент импульса. Вот разберёмся с моментом импульса.

Надеюсь, кто-нибудь из вас помнит ещё что это такое, а если не помнит, то я напишу: . Если частица в плоскости движется по окружности, то момент импульса это вектор перпендикулярный плоскости орбиты частицы. Оператор момента импульса это будет произведение оператора координаты и оператора импульса: . Ещё можно ввести оператор . Мы имеем три проекции момента на координатные оси и оператор , который даёт полную величину момента. Непосредственным вычислением можно убедиться, что операторы между собой не коммутируют, например , это математический факт, физически этому соответствует важное обстоятельство – проекции момента на координатные оси не могут быть заданы одновременно. Но легко убедиться, что коммутирует с , а поскольку x ничем не лучше y, z, то это будет означать, что коммутирует , коммутирует , коммутирует с , сами компоненты между собой не коммутируют, но каждая компонента коммутирует с абсолютным значением момента импульса. Это означает, что можно задать величину момента и проекцию его на одну из координатных осей, но только на одну. Обычно в качестве такой проекции выбирают ось z.

Мы можем задать длину вектора и задать его проекцию на ось z, но проекции на оси x, y мы задать не можем, тогда мы имеем такую картину, что вектор где-то лежит на конической поверхности, какое он там занимает место не определено, но проекция его на ось z вполне определённая.

Исходя только из коммутационных соотношений, можно найти собственные значения операторов и .1) Собственные векторы и собственные значения будем нумеровать двумя числами – два числа j и m определяют вектор , и такой вектор является собственным вектором и (это возможно, потому что эти операторы коммутируют и у них общие собственные векторы).

При этом , а .

Ситуация такая: задаёте j из набора , теперь можете задать число из набора , тогда пара чисел (j, m) определяет вектор в абстрактном пространстве, который мы обозначаем , и этот вектор является собственным вектором оператора вот с такими собственными значениями: , и оператора с собственными значениями .

Перейти на страницу: 1 2

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.