Общие сведения о люминесценции.

Люминесценция является одним из широко распространенных в природе видов излучения. Помимо лю­минесценции известны и другие свечения, которые, однако, существен­но отличаются от нее, например, температурное излучение, свечения, наблюдаемые при быстром движении электрических зарядов (тормоз­ное излучение, Свечение Вавилова — Черенкова) и т. п.

Люминесценцией называют из­быток излучения над температурным при условии, что избыточное излучение обладает конечной длительностью, превышающей период световых колебаний (~ 10-10 сек).

Это определение основано на противопоставлении люминесценции температурному излучению, свойства которого хорошо известны. Вместе с тем оно указывает на наличие у люминесценции конечной длительно­сти послесвечения, превышающей период световых колебаний. Это усло­вие позволяет отличать люминесценцию от отражения, рассеяния и излучения Вавилова-Черенкова, которые являются практически без­ынерционными.

Очень многие вещества обладают способностью люминесцировать. При этом они могут находиться в газообразном, жидком и твердом со­стояниях. Простейшими из них являются газы и пары различных эле­ментов (О2, I2, Na2 и т. д.). Люминесцентными свойствами обладают соли некоторых веществ (редкоземельных элементов, ураниловых сое­динений), ароматические соединения (нафталин, бензол, антрацен, и производные и др.), растворы ряда красителей, а также многие другие вещества. Особый класс люминесцирующих соединений составляют так называемые кристаллофосфоры — неорганические вещества (например. ZnS, CaS и др.), в кристаллическую решетку которых введены ионы тя­желых металлов (например, Ag, Cu, Mn и др.).

Для того чтобы вещество начало люминесцировать, к нему необ­ходимо извне подвести определенное количество энергии. Тогда его ча­стицы переходят в новое, более богатое энергией, возбужденное состоя­ние, в котором они пребывают определенное время, после чего вновь возвращаются в невозбужденное состояние, отдавая при этом часть энергии возбуждения в виде квантов люминесценции.

Энергия возбуждения может быть подведена к веществу различ­ными способами. В зависимости от метода возбуждения возникающее свечение получает различные названия. Так, при возбуждении свечения оптическими частотами оно носит название фотолюминесценции; свече­ние, возникающее под действием катодных лучей, называется катодолюминесценцией; при возбуждении веществ рентгеновыми лучами воз­никает рентгенолюминесценция; при облучении их лучами

радиоактив­ных элементов наблюдается ра­диолюминесценция; свечение, по­являющееся при химических ре­акциях, получило название хемилюминесценции; свечение, возни­кающее под действием электри­ческого поля, называется элект­ролюминесценцией. Люминесцен­ция может быть получена и с помощью других источников воз­буждения.

Возникновение люминесцен­ции и ряд ее свойств легко понять из схемы, изображенной на рис.1. Энергия молекулы склады­вается из электронной энергии, колебательной энергии ядер и энергии вращения. Все виды энер­гии квантованы, причем кванты энергии вращения гораздо мень­ше квантов электронной и коле­бательной энергии. На рис. 1 уровни 0" и 0' являются нижними колебательными энергетическими уровнями нормального I и возбужденного II состояния молекулы. Со­стояние 0' отличается от 0" на квант электронной энергии, величина которого определяет расстояние по вертикали между уровнями 0" и 0'. Каждому значению электронной энергии соответствует ряд возможных значений колебательной энергии молекулы. Если не учитывать энергию вращения, то возможные значения энергии молекулы для электронных состояний I и II характеризуются системой энергетических уровней 0" — 4" и 0' — 4', положение последних определяется суммой электрон­ной и колебательной энергии.

Распределение молекул по колебательным уровням как невозбужденного, так и возбужденного электронного состояния описывается

формулой Больцмана:

(1)

где N0 — полное число всех молекул; Ni — число молекул на уровне i; Еi — значение колебательной энергии, соответствующее уровню i. Если при некоторой температуре Ei >> kT, то в соответствии с формулой (1) подавляющая часть молекул должна находиться на нулевом колебательном уровне. Для комнатной температуры это условие обыч­но выполняется, что позволяет считать, что в этом случае практически все молекулы находятся на нулевом уровне. Таким образом, по мере роста номера уровня число находящихся на нем молекул быстро убы­вает.

На рис. 1 поглощение световых квантов различной величины обо­значено стрелками, идущими вверх, а излучение квантов люминесцен­ции — стрелками, направленными вниз. Длины стрелок пропорциональ­ны величинам энергии поглощенных или излученных квантов hn т. е. пропорциональны частотам соответствующих линий в спектрах поглоще­ния или излучения. Из рис. 1 видно, что разности частот линий поглощения дают расстояния между колебательными уровнями верхнего электронного состояния; о строении нижнего электронного со­стояния можно судить по разностям частот линий излучения. Это открывает возможность анализа колебательных состояний молекул с помощью спектров люминесценции.

Перейти на страницу: 1 2

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.