2) Время длительностилюминесценции разделяют на флуоресценцию и фосфоресценцию.
2а) Флуоресценцияобусловлена переходами атомов, молекул или ионов из возбужденного состояния в нормальное и прекращающается сразу после окончания действия возбудителя свечения.
2б) Фосфоресценция
. При введении веществ в очень вязкие среды (в желатину, сахарные леденцы и т. д.), а также при замораживании растворов возникает длительное свечение, продолжающееся доли секунды и даже целые секунды. Свечение такого вида называют замедленной флуоресценцией, или фосфоресценцией. Известны два вида замедленной флуоресценции: при одном спектр свечения совпадает со спектром флуоресценции (a-процесс), при втором наблюдается резко отличный спектр свечения, сдвинутый в сторону длинных волн (b-процесс).
Фосфоресценция обусловлена наличием метастабильных возбужденных состояний атомов и молекул, переход из которых в нормальное состояние затруднен по тем или иным причинам. Переход из метастабильного состояния в нормальное возможен лишь в результате дополнительного возбуждения, например теплового.
Разграничение на флуоресценцию и фосфоресценцию является достаточно условным. Иногда под флуоресценцией понимают спонтанную люминесценцию, а под фосфоресценцией вынужденную люминесценцию.
3) По типу возбуждения
различают: ионолюминесценцию, кандо-люминесценцию, катодолюминесценцию, радиотермолюминесценция, рентгенолюминесценцию, электролюминесценцию, фотолюминесценцию, хемилюминесценцию, биолюминесценцию, триболюминесценцию, кристаллолюминесценцию.
3а) Ионолюминесценция
- свечение при прохождении ультразвуковых волн через растворы некоторых веществ.
3б) Для кандолюминесценции
необходим контакт пламени с люминофором, при этом он не должен сильно нагреваться.
3в) Катодолюминесценция- люминесценция, возникающая при воз-буждении люминофора электронным пучком; один из видов радиолюминесценции. Первоначальное название пучка электронов — катодные лучи, отсюда термин «Катодолюминесценция». Способностью к катодолюминесценции обладают газы, молекулярные кристаллы, органические люминофоры, кристаллофосфоры, однако только кристаллофосфоры стойки к действию электронного пучка и дают достаточную яркость свечения. Именно они и применяются в качестве катодолюминофоров.
КПД катодолюминесценции обычно составляет 1—10%, основная же часть энергии электронного пучка переходит в тепло. Катодолюминесценция широко применяется в технике, особенно в вакуумной электронике. Ей обусловлено свечение экранов черно-белых и цветных телевизоров, различных осциллографов, электронно-оптических преобразователей и т.д.
3г) Радиотермолюминесценция
.
Оказалось, что если сильно охлаж-денный образец вещества, предварительно облученный гамма-лучами, альфа-частицами или электронами, постепенно нагревать, то он начинает интенсивно светиться. Практически все вещества могут таким образом "накапливать" в себе свет и долго сохранять его. И лишь при нагреве свет как бы "оттаивает", - начинается рекомбинация "замороженных" электронов, сопровождаемая световым излучением. Цвет свечения постепенно меняется, изменяется также и его интенсивность. При этом пики интенсивности соответствуют температурам структурных переходов, что особенно заметно у различных полимеров. Даже незначительные изменения структуры вещества: повышение степени кристалличности, изменение взаимного расположения макромолекул, существенно влияют на характер свечения. РТЛ весьма чувствительна к механическим напряжениям в полимере.
Все это позволило создать на основе РТЛ простые и точные методики анализа структуры, излучения степени однородности смесей, исследования деформационных свойств и других характеристик полимеров, причем для анализа достаточно образца весом в сотые доли миллиграмма.
3д) Фотолюминесценция -
люминесценция, возбуждаемая светом. Простейший случай фотолюминесценции – резонансное излучение атомных паров, когда испускается электромагнитное излучение такой же частоты, какую имеет возбуждающее излучение. При фотолюминесценции молекул и других сложных систем, согласно правилу Стокса, излучение фотолюминесценции имеет меньшую частоту, чем возбуждающий свет. Это правило часто нарушается и наряду со стоксовой наблюдается антистоксовая часть спектра – излучение частоты, большей, чем частота возбуждающего света. В более сложных молекулах после поглощения света происходит перераспределение энергии между молекулами, вследствие чего спектр излучения не зависит (или слабо зависит) от возбуждающей частоты.
Перейти на страницу: 1 2 3 4 5
|