Античастицы

Но можно ли считать, что эти антипротоны прилетели к нам из Антимира? Вообще говоря, нельзя. В космических лучах есть протоны достаточно высокой энергии, и при столкновении с частицами, например, межзвёздного газа они могут рождать антипротоны в той же самой реакции, что идёт на ускорителях:

Таким образом, сам факт обнаружения антипротонов в космических лучах можно объяснить, не привлекая гипотезы об антимире,

В космических лучах наблюдались обычные ядра многих элементов таблицы Менделеева, вплоть до Урана. Однако ни одного антиядра в космических лучах до сих пор обнаружено не было. Правда пределы, которые были получены в опытах по поиску антиядер ещё не настолько низки, чтобы можно уверенно исключить возможность их существования. Сторонники Антимира считают, что поток ядер антигелия должен быть в 10 раз меньше той величины, которую удалось измерить на сегодняшний день. Предсказываемое значение не слишком мало и в принципе достижимо уже в ближайшем будущем.

Надо сказать, что если бы удалось обнаружить хотя бы одно ядро антигелия, а ещё лучше — антиуглерода, то это бы стало исключительно серьёзным подтверждением гипотезы о существовании Антимира. Дело в том, что вероятность создать антигелий за счет столкновения протонов космических лучей с веществом межзвёздного газа пренебрежимо мала, меньше 10-11. В то же время если существуют антизвёзды, то в них антиводород должен перегорать в антигелий, а затем в антиуглерод.

Как бы то ни было, антиядер пока не зарегистрировано, хотя с большой уверенностью отрицать их присутствие в космических лучах нельзя.

У нас нет надёжных доказательств того, что какие-либо частицы Антимира прилетают к нам на Землю. Пока мы не наблюдали ни одного антиядра; результаты по измерению потока антипротонов не могут расцениваться как доказательство существования Антимира — слишком много для этого требуется предположений, которые нуждаются в объяснении и проверки. Вместе с тем наши экспериментальные результаты не настолько полны и точны, чтобы совсем закрыть возможность существования Антимира.

Однако данные по космическим лучам могут наложить некоторые ограничения на примесь антивещества в нашей Галактике. Считается, что почти все космические лучи генерируются в процессах, которые происходят “внутри” нашей Галактики. Поэтому доля антивещества, возможно существующего в Галактике, не должна превышать доли антипротонов и антиядер в космических лучах. Известно, что в космических лучах отношение числа антипротонов к числу протонов приблизительно равно 10-4, а отношение числа ядер антигелия к числу протонов по крайней мере меньше 10-5.

Отсюда делается вывод: примесь антивещества в Галактике меньше 10-4 — 10-5. Это означает, что экспериментальные данные по космическим лучам не противоречат наличию, грубо говоря, одной антизвезды на каждые 10 — 100 тысяч обычных звёзд. Подчеркнём, что такая оценка отнюдь не является доказательства существования антизвёзд. Совершенно неясно, как могли такие антизвёзды образоваться в нашей Галактике.

Свет от антизвезды нельзя отличить от видимого света обычных звёзд. Однако процессы термоядерного синтеза, который обеспечивает “горение” звёзд, идут по-разному для звёзд и антизвёзд. Если в первом случае реакции термоядерного синтеза сопровождаются испусканием нейтрино, например в таких процессах:

То в антизвёздах аналогичные реакции приводят к вылету антинейтрино:

С экспериментальной точки зрения более выгодно искать громадные потоки антинейтрино, которые могут возникать на последней стадии эволюции антизвёзд. Дело в том, что когда звезда исчерпывает все свои запасы термоядерного топлива, она начинает катастрофически быстро сжиматься под действием своих гравитационных сил. Если масса звезды составляет одну-три массы Солнца, то это сжатие продолжается до тех пор, пока электроны не “вдавятся” внутрь атомных ядер, из которых состоит звезда. Пи этом происходит превращение протонов ядер в нейтроны и испускаются нейтрино:

Перейти на страницу: 1 2 3 4

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.