Бозе-Эйнштейновский конденсат

Волны

де Бройля.

Помимо волновых, были также обнаружены и корпускулярные свойства. Соотношения, связывающие волновые характеристики (частота w и длина волны l ) с корпускулярными (энергия e и импульс р ), установленные Эйнштейном (1905) для кванта света

e =hw=hu

т. е. частицы с массой покоя, равной нулю, были обобщены фран­цузским физиком де Бройлем (1924) на частицы с отличной от нуля массой покоя. Другими словами, де Бройль предположил, что дуализм волна — частица должен быть свойствен не только свету, но и электронам и вообще любым частицам.

Соответствующая частота и волновое число по гипотезе де Бройля должны определяться соотношениями, подобными эйнштейновским, т. е. длина дебройлевской волны движущихся частиц будет равна

l=2ph/p , где р – импульс частиц

Теория квантов Планка, постулаты Бора, а затем и гипотеза Бройля были важнейшими этапами в процессе развития теоретических основ физики микрочастиц.

Фундаментальный шаг в этом направлении был сделан Шредингером (1926). Он предложил описывать движение микроча­стиц (например, электронов) с помощью волнового уравнения.

Уравнение Шредингера.

Уравнение Шредингера, по существу представляет собой постулат нерелятивистской квантовой механики.

История открытия уравнения Шрёдингера в этом смысле весьма поучительна. Титаны физики убедились в том, что электрон не занимает определённого положения в атоме и не может двигаться там по какой-либо траектории.

Взамен этого они пока что усвоили довольно туманную идею о том, что при движении в атоме электрон "расплывается". Эту расплывчатую идею Шрёдингеру удалось выразить весьма точно на однозначном языке формул.

Уравнение Шрёдингера, как и всякий глубокий закон природы, нельзя вывести строго из более простых законов. Его можно только угадать.

Шрёдингер впоследствии признался, что и сам не вполне понимает, как ему удалось это сделать. Но после того, как уравнение угадано, надо ещё научиться им пользоваться: надо знать, что означают все символы в уравнении и какие явления в атоме они отображают. Всё последующее поколение физиков тем и занимается до настоящего времени.

Таковы некоторые общие свойства волновых процессов, описы­ваемых группой волн получившее название соотношения неопределенности Гейзенберга . Пока лишь укажем, что соотноше­ние неопределенностей в квантовой теории является проявлением корпускулярно-волнового дуализма. Согласно соотношению не­определенностей всегда имеют место неточности или ошибки в теоретическом предсказании координаты и импульса, причем вся­кая локализация частицы связана с неизбежным размазыванием ее

импульса. Очевидно, что это обстоятельство делает невозмож­ным предвычислить классическую траекторию движения микро­частиц, т. е. квантовая теория вскрывает принципиально новые свойства микрообъектов, не укладывающихся в рамки обычных классических представлений движения материальных точек.

Первая интерпретация связи между корпускулой и волной была предложена Шредингером. Согласно его гипотезе, частица должна представлять собой образование из волн, причем плот­ность распределения такого сгустка волн в пространстве равна .

Таким образом, по Шредингеру, волновая функция связана непосредственно со структурой микрочастицы. Однако такая ин­терпретация волновой функции оказалась несостоятельной.

Действительно, хотя теоретически всегда возможно с по­мощью суперпозиции волн образовать волновой пакет с протя­женностью в пространстве порядка радиуса частицы (например, электрона), однако, фазовая скорость каждой монохроматической волны, образующей волновой пакет, различ­на. Благодаря этому волновой пакет с течением времени начнет расплываться.

Корпускулярно-волновой дуализм, столь очевидный в эксперименте, создает одну из самых трудных проблем физической интерпретации математического формализма квантовой механики. Рассмотрим, например, волновую функцию, которая описывает частицу, свободно движущуюся в пространстве. Традиционное представление о частице, помимо прочего, предполагает, что она движется по определенной траектории с определенным импульсом p. Волновой функции приписывается длина волны де Бройля l = h/p, но это характеристика такой волны, которая бесконечна в пространстве, а потому не несет информации о местонахождении частицы. Волновую функцию, локализующую частицу в определенной области пространства протяженностью Dx, можно построить в виде суперпозиции (пакета) волн с соответствующим набором импульсов, и если искомый диапазон импульсов равен Dp, то довольно просто показать, что для величин Dx и Dp должно выполняться соотношение

Перейти на страницу: 1 2 3 4 5 6 7 8

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.