Основные методы измерения акустических сопротивлений

Электрическое сопротивление акустического преобразователя определяется выражением

(29)

где kэ.м — коэффициент электромеханической связи;

zэ.с — электрическое сопротивление излучателя при заторможенной механической стороне; Подробное описание подшипник шарнирный сферический на сайте.

zx — искомое акустическое сопротивление образца;

za — акустическое сопротивление излучателя при отсутствии механической нагрузки. Измерение электрического сопротивления излучателя звука проводят с помощью мостовых методов.

3). Покажем возможность измерения удельного акустического сопротивления жидкости по реакции на источник звука, выполненный в виде кварцевого излучателя.

На резонансной частоте эквивалентная схема пьезоизлучателя содержит межэлектродную емкость С0 и соединенные последовательно сопротивления излучения Rs и потерь Rl. Так как для кварца емкостный ток значительно превосходит активный (<<), необходимо скомпенсировать емкостную составляющую тока соответствующей индуктивностью, при этом эквивалентное резонансное сопротивление Rое полученного контура должно быть значительно больше активных сопротивлений кварца.

Если такой излучатель включить в анодную цепь резонансного усилительного·каскада, то получают эквивалентную схему (рис. 5).

Рис. 5. Эквивалентная схема усилительного каскада, с элементами преобразователя

Напряжение U на выходе усилителя (т. е. на излучателе) можно определить из выражения

, (30)

где Eg — напряжение на входе усилительного каскада;

μ — коэффициент усиления;

Ri — внутреннее сопротивление усилителя, равное внутреннему сопротивлению лампы при малых Е8.

Сопротивление излучения для основной резонансной частоты кварцевого пьезопреобразователя при одностороннем излучении пропорционально удельному акустическому сопротивлению жидкости

(31)

где ρ — плотность жидкости;

С — скорость распространения в ней ультразвуковых колебаний;

F — площадь излучателя.

Таким образом, в общем виде напряжение на излучателе не является линейной функцией удельного акустического сопротивления среды, но выражение (30) может быть, линейно относительно Rs при выполнении следующих условий:

Rs<<Ri; (32)

Rs<<Rое; (33)

Ri<<Rs; (34)

При этом напряжение на излучающем кварце будет пропорционально удельному акустическому сопротивлению исследуемой среды

, (35)

где S — крутизна характеристики лампы усилительного каскада

Так как сопротивление излучения обратно пропорционально квадрату частоты, условие (32) легко выполняется на частотах мегагерцового диапазона; например, если f0=3 МГц и F=3 см2, то при одностороннем излучении Rs равно нескольким килоомам, т. е. на три порядка меньше внутреннего сопротивления усилителя Ri=3 — 5 Мом.

Условие (33) выполнить труднее, так как отношение этих сопротивлений не зависит от частоты и площади излучателя:

, (36)

что при добротности контура Q==200 и rС=1,5×105 г/см2×с дает Rое=20Rs. Конечная величина эквивалентного сопротивления контура вызывает нелинейную зависимость напряжения от величины сопротивления излучения. Для уменьшения этого влияния необходима добротность контура Q³1000, недостижимая обычными конструктивными мерами.

С целью устранения шунтирующего действия колебательного контура в усилителе можно применить положительную обратную связь по напряжению. Такое увеличение добротности контура (вплоть до Q=µ) не скажется на нормальной работе усилителя (не вызовет самовозбуждения), так как контур остается шунтированным достаточно малым сопротивлением излучения кварца.

Суммарное сопротивление потерь составляет несколько процентов от величины Rs на высоких ультразвуковых частотах и зависит от способа крепления пьезопластины. Погрешность, возникающую из-за дополнительного падения напряжения на сопротивлении потерь, можно свести к нулю введением компенсирующего напряжения при дальнейшем детектировании выходного напряжения усилителя, чем обеспечивается и условие (34).

Структурная схема устройства для измерения удельного акустического сопротивления вышеуказанным способом представлена на рис. 6, где 1 — генератор; 2 — усилитель с положительной обратной связью по напряжению; 3 — пьезоизлучатель; 4 — контролируемая жидкость; 5 — детектор с компенсацией падения напряжения на сопротивлении потерь; 6 — индикатор.

Перейти на страницу: 1 2 3 4

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.