Центральным называют такое силовое поле, в котором потенциальная энергия частицы является функцией только от расстояния r до определенной точки - центра поля: U=U(r). Сила, действующая на частицу в таком поле, тоже зависит лишь от расстояния r и направлена в каждой точке пространства вдоль радиуса, проведенного в эту точку из центра поля.
Хотя частица, движущаяся в таком поле, и не представляет собой замкнутую систему, тем не менее для нее выполняется закон сохранения момента импульса, если определять момент по отношению к центру поля. Действительно, поскольку направление действующей на частицу силы проходит через центр поля, то равно нулю плечо силы относительно этой точки, а потому равен нулю и момент силы. Согласно уравнению отсюда следует, что L
= const.
(где L –
вектор момента импульса, а K
момент силы K
= [rF
]. Уравнение получается из уравнения L
= [rp
]. Определим производную по времени от момента импульса частицы. Согласно правилу дифференцирования произведения имеем
Так как - есть скорость v
частицы, а p
= mv
, то первый член есть m [vv
] и равен нулю, поскольку равно нулю векторное произведение любого вектора самого на себя. Во втором члене производная - есть, как мы знаем, действующая на частицу сила F
. Таким образом, .)
Поскольку момент L
= m[rv
] перпендикулярен направлению радиуса-вектора r, то из постоянства направления L
следует, что при движении частицы ее радиус-вектор должен оставаться все время в одной плоскости - плоскости, перпендикулярной направлению L
. Таким образом, в центральном поле частицы движутся по плоским орбитам - орбитам, лежащим в плоскостях, проходящих через центр поля.
Данное уравнение можно записать в виде:
где ds
- вектор перемещения материальной точки за время dt. Величина векторного произведешь двух векторов геометрически представляет собой лощадь построенного на них параллелограмма. Площадь же параллелограмма, построенного на векторах ds
и r
, есть удвоенная площадь бесконечно узкого сектора OAA’ , описанного радиусом-вектором движущейся точки за время dt. Обозначив эту площадь через dS, можно записать величину момента в виде
Величина называется секториальной скоростью.
Задача о движении в центральном поле в особенности важна потому, что к ней сводится задача об относительном движении двух взаимодействующих друг с другом материальных точек - так называемая задача двух тел.
Если рассмотреть это движение в системе центра инерции обеих частиц. В этой системе отсчета суммарный импульс частиц равен нулю:
m1v
1+m2v
2=0,
где v
1,v
2 - скорости частиц. Введем также относительную скорость частиц
|