Невидимые излучения.

Пользуясь современным языком теории информации, можно ска­зать, что за попытку проникнуть за дифракционный предел приходится платить ценой потери информации о деталях изучаемого объекта. Действительно, методы субмикроскопии позволяют лишь судить о на­личии микрообъектов в поле зрения микроскопа, но не об их форме и других деталях.

Весьма заметный качественный скачок в методах микроскопии был сделан физиками, которые стали использовать в микроскопии инфракрасное, ультрафиолетовое и другие невидимые глазом излуче­ния. Применение этих излучений для освещения объектов наблюдения было связано с их способностью поглощать, отражать, пропускать и преломлять падающее на них излучение. Поэтому, вообще говоря, при использовании излучений различных участков спектра эти объекты вы­глядят по-разному. Следовательно, подбирая соответствующее осве­щение, можно получить новую информацию о предмете, так как характеристики поглощения, отражения, пропускания и преломления реальных неорганических и органических веществ зависят от длины волны.

Наряду с этим следует отметить, что использование в микро­скопии ультрафиолетового излучения (более коротковолнового по сравнению с видимым) позволило повысить предел разрешающей спо­собности микроскопа. Это легко понять, если вспомнить, что теорети­ческий предел разрешающей способности пропорционален длине волны источника излучения. Если при l » 5200 ¾ 5800 A° (жёлто-зелё­ная область, где глаз обладает наибольшей чувствительностью) тео­ретический предел разрешающей способности при n=1 (где n - показатель преломления) составляет около 2000 A°, то при использо­вании ультрафиолетового излучения (l » 3000 A°) теоретический пре­дел разрешающей способности достигает примерно 1200A°. Ясно, что в таких ультрафиолетовых микроскопах используются специальные оптические элементы.

Все приборы, использующие невидимые глазом излучения, со­стоят из осветителя (источника освещения), оптических элементов (линз, зеркал, призм и т. п.), пригодных для работ в данном участке спектра, и элементов, преобразующих «невидимое изображение» в ви­димое. В последнее время стали успешно использовать для получения информации о строении объектов радиоизлучение (миллиметрового и субмиллиметрового), длины волн которого значительно больше длин волн видимого излучения.

Остановимся несколько подробнее на некоторых общих физиче­ских закономерностях, свойственных получению изображения в микро­скопии.

Получение большого увеличения в принципе осуществимо путём использования соответствующих оптических элементов. Однако если предел разрешающей способности прибора уже достигнут и детали изображения нельзя различить, то дальнейшее увеличение исследуе­мого предмета теряет практический смысл. Поэтому существует тер­мин «полезное увеличение микроскопа». С вопросом увеличения связан также и вопрос об искажениях в микроскопе (как и в других оптических приборах). Эти искажения возникают из-за отклонения оптических по­верхностей элементов (линз и т. п.) от идеальной формы, неточного расположения элементов и т. п. Кроме этого, искажения (хроматическая аберрация) возникают и из-за зависимости коэффици­ента преломления материалов, из которых изготавливаются оптиче­ские элементы, от длины волны света (дисперсии света в материалах). Таким образом, мы видим, что «проникнуть глубже» в мир малых объ­ектов путём использования больших увеличений нельзя. И только ис­пользование более коротковолновых излучений, т. е. излучений с меньшими длинами волн, чем у видимого света, должно в принципе привести к повышению разрешающей способности. Тем самым пресло­вутый дифракционный предел может быть «отодвинут», и открывается возможность наблюдения и исследования новых классов невидимых объектов и новых деталей уже известных объектов.

Перейти на страницу: 1 2

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.