Устройство электронного микроскопа.

Максимальное увеличение такого микроскопа определяется ве­личинами фокусных расстояний объективной и проекционной линз и расстоянием между объектом наблюдения и плоскостью конечного изображения. Для просвечивающего микроскопа с одной проекционной линзой эта зависимость выражается следующей простой формулой:

M

=

L

­

2/(4

*

f

1

*

f

2)

,

где L ¾ расстояние между объектом и плоскостью изображения; f1 и f2 ¾ соответственно фокусные расстояния объективной и проекцион­ной линз.

Из формулы видно, что для достижения больших увеличений целесообразно использовать короткофокусные линзы и располагать их на большом расстоянии друг от друга, что соответствует большому значению величины L. Заметим, что в этом отношении электронный микроскоп аналогичен оптическому.

Реально в современных электронных микроскопах L не превы­шает 1¾ 2 м, а величины f1 и f2 составляют порядка 1,5 ¾ 2 мм. Нетрудно подсчитать, что в этом случае Mмакс=20000¸40000. Однако для электронного микроскопа есть смысл добиваться дальнейшего повышения увеличения ещё на порядок, поскольку максимальное по­лезное увеличение его, определяемое отношением разрешающей способности человеческого глаза (~0,2 мм) на расстоянии наилучшего зрения к разрешающей способности электронного микроскопа, состав­ляет порядка 400000.

Хотя, как мы видели, теоретическая разрешающая способность в электронной микроскопии, ограничиваемая дифракционным преде­лом, при использовании ускоряющего напряжения порядка 100 кв составляет 0,037А°, реально достижимое разрешение в силу ряда при­чин, о которых речь пойдёт ниже, оказывается существенно меньше этой величины. В современных электронных микроскопах гарантируе­мое разрешение составляет 4,5 ¾ 5,0А°. Величина максимального полезного увеличения (400 000*) соответствует разрешающей способ­ности в 5,0А°. Для достижения столь большого увеличения в электронных микроскопах обычно используются промежуточные линзы небольшого увеличения.

Перейти на страницу: 1 2 

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.