Виды электронных микроскопов.

Из электронных микроскопов упомянем зеркальный электронный микроскоп, основной особенностью которого является чувствитель­ность к микроскопическим электрическим и магнитным полям на отражающем массивном объекте. При этом достигается разрешение деталей порядка 1000А° и увеличение почти в 2000*. Работа такого микроскопа основана на действии микроскопических электрических и магнитных полей на электронный поток. Зеркальный электронный мик­роскоп позволяет изучать, например, доменную структуру ферромагнитных материалов, структуру сегнетоэлектриков.

В теневом электронном микроскопе, так же как и в растровом, формируется электронный зонд, однако положение его остается неиз­менным. Электронные лучи зонда служат для получения увеличенного теневого изображения объекта, помещенного в непосредственной бли­зости от зонда. Образование изображения обусловлено рассеянием и поглощением электронов различными участками объекта. Следует от­метить, что интенсивность конечного изображения в теневом электронном микроскопе незначительна, поэтому обычно в них исполь­зуются усилители света типа электронно-оптических преобразо­вателей.

Важной разновидностью электронных микроскопов растрового типа является микрорентгеноспектральный анализатор. Прибор осно­ван на возбуждении так называемого характеристического рентгеновского излучения атомов малого участка поверхности - об­разца с помощью тонкого высокоскоростного электронного зонда. Электронный зонд с помощью системы развертки обегает исследуе­мую поверхность. При торможении электронов на поверхности возникает наряду с так называемым тормозным излучением характери­стическое рентгеновское излучение, свойства которого существенно определяются строением электронных оболочек в атомах вещества. Это излучение обязано своим возникновением энергетическим перехо­дом между глубокими энергетическими уровнями атомов.

Возникающее характеристическое излучение регистрируется с помощью рентгеноспектральной аппаратуры. Диаметр электронного зонда может изменяться от 360 до 0,5 мкм, а размер просматриваемой площадки представляет собой квадрат со стороной 360, 180, 90 или 45 мкм. В одном из приборов такого типа скорость анализа по одному хи­мическому элементу соответствует движению зонда 8 или 96 мкм/мин (при механическом перемещении объекта). Анализировать можно все элементы периодической системы элементов Менделеева, легких (от атомного номера 11 - натрия).минимальный объем вещества, поддаю­щегося количественному анализу, составляет 0,1 мкг. С помощью микрорентгеновского анализатора получают распределение физико-химического состава вдоль исследуемой поверхности.

В СССР серийно выпускается (выпускался) микрорентгеновский анализатор типа МАР-1 (диаметр зонда около 1 мкм, наименьшая ана­лизируемая площадь 1мкм­2). Приборы такого вида находят применение в электронной промышленности и в других областях науки и техники.

Читатель, видимо, обратил внимание на тот факт, что в элек­тронных микроскопах не достигается разрешающая способность, предсказываемая теорией. В чем же дело? Вспомним, что в формиро­вании изображения в электронных микроскопах важную роль играют элементы электронной оптики, позволяющие осуществлять управле­ние электронными пучками. Этим элементам — электронным линзам свойственны различного рода отклонения от идеального (требуемого расчетом) распределения электрических и магнитных полей. Положе­ние здесь во многом аналогично ограничениям в оптической микроскопии, связанным с неточностью изготовления оптических линз, зеркал и других элементов. Кроме того, ряд трудностей связан с осо­бенностями изготовления и работы источников электронных потоков (катодов), а также с проблемой создания потоков, в которых электроны мало отличаются по скоростям. В соответствии с этими фактами, дей­ствующими в реальных условиях, различают определённые виды искажений в электронных микроскопах, используя при этом терминоло­гию, заимствованную из световой оптики.

Перейти на страницу: 1 2 3

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.