Пути преодоления дифракционного предела электронной микроскопии.

Заметим, что, образно говоря, в этом двухступенчатом процессе мы фиксируем, «замораживаем» фронт электронных волн и потом вос­производим его вновь в виде фронта световой волны в значительно большем масштабе, используя при этом различие длин волн света и электронов (это соотношение, например, может быть порядка 6000А°/0,030А° » 200000).

В таком «безлинзовом», а потому и не вносящим искажений уве­личении и заключается основное достоинство метода голографии в электронной микроскопии.

К числу новых направлений следует также отнести область мик­роскопии, использующую вместо электронов другие виды микрочастиц, тяжелых по сравнению с электронами. В этом случае дифракционный предел, предсказываемый теорией, смещен в более далекую область малых размеров. Примером такого направления микроскопии является развивающаяся автоионная микроскопия.

В автоионных микроскопах, используемых при исследовании фи­зики поверхностных явлений, главным образом в металлах, оказывается возможным видение отдельных атомов. Методика авто­ионной микроскопии весьма своеобразна; эта область претерпевает бурное развитие.

Как же далеко мы сможем еще продвинуться по пути раскрытия тайн микрообъектов? Мы видим, что за исторически короткий срок, ис­пользуя новейшие достижения физики и радиоэлектроники, электронная микроскопия превратилась в мощное орудие исследова­ния природы. Обозримое будущее этой области науки связано с реализацией дерзновенных проектов создания таких приборов, кото­рые позволят «приблизить» и сделать зримым многообразный и красочный микромир. Далеко не всё ещё ясно на этом пути, на котором постоянно возникают всё более и более сложные научно-технические и технологические проблемы. Современные приборы микроскопии явля­ются несравненно более сложными устройствами, чем микроскопы недавнего прошлого.

Уже сейчас мы сталкиваемся с очевидным фактом: приборы мик­роскопии становятся всё более сложными и громоздкими по мере проникновения в ранее недосягаемые тайны мира малых объектов. Дальнейшее усложнение этих приборов, увеличение затрат на их изго­товление определяются необходимостью разрешения новых всё более сложных проблем.

Здесь уместно провести аналогию с развитием эксперименталь­ной ядерной физики, где получение информации о свойствах микрочастиц вещества, из которых состоят ядра атомов, связано с созданием сложнейших и, как правило, чрезвычайно громоздких и до­рогих приборов и установок.

Получение информации, раскрывающей тайны микромира, опла­чивается высокой ценой. Однако происходящие при этом затраты интеллектуальных и материальных ресурсов, как показывает опыт ис­тории науки, безусловно, окупаются теми возможностями, которые открываются при этом в технике, физике, химии, биологии и медицине.

Перейти на страницу: 1 2 

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.