Досвід і відповідний аналіз механічних уявлень показують, що для характеристики механічного руху тіл крім кінетичної енергії необхідно ввести ще одну величину – імпульс . Ці дві величини є основними вимірами механічного руху тіл: перша – скалярна, друга – векторна. Обидві вони відіграють центральну роль при побудові механіки.
Перейдемо до більш детального вивчення імпульсу. Перш за все запишемо основне рівняння динаміки Ньютона через імпульс:
, (13)
тобто похідна імпульсу матеріальної точки по часу дорівнює діючій на неї силі. В частинному випадку, коли , то .
Зауважимо, що в неінерціальній системі відліку сила включає в себе не тільки сили взаємодії даної частинки з іншими тілами, але і сили інерції.
Рівняння (13) дозволяє знайти приріст імпульсу частинки за довільний проміжок часу, якщо відома залежність сили від часу. Дійсно, з (13) випливає, що елементарний приріст імпульсу частинки за проміжок часу є . Проінтегрувавши цей вираз по часу, знайдемо приріст імпульсу частинки за скінченний проміжок часу :
.
Якщо сила , то вектор можна винести з-під інтеграла і тоді . Величину, яка стоїть в правій частині цього рівняння, називають імпульсом сили. Таким чином, приріст імпульсу частинки за довільний проміжок часу дорівнює імпульсу сили за той же час.
|