Введение.

Важнейшей характеристикой линейной распределенной системы является закон дисперсии, который связывает волновое число и частоту монохроматической волны. Он может быть записан как , или в неявной форме .

Когда плоская волна описывается одним (вообще говоря, интегродифференциальным) уравнением, закон дисперсии получают, отыскивая его решение в виде . В простейшем случае процесс распространения волны описывается уравнением

.

При этом волновое число связано с частотой линейной зависимостью , или , где скорость распространения волны есть постоянная величина. Однако уже при учете диссипативных процессов поведение волны описывается более сложными уравнениями. Закон дисперсии также усложняется. Для звуковых волн в вязкой теплопроводящей среде и электромагнитных волн в среде с проводимостью справедливы следующие соотношения между волновым числом и частотой:

.

В более общих случаях от частоты могут сложным образом зависеть действительная и мнимая части волнового числа:

.

Действительная часть характеризует зависимость от частоты фазовой скорости распространения волны , а мнимая часть — зависимость коэффициента затухания волны от частоты.

Во многих случаях волновой процесс удобно описывать не одним уравнением типа волнового, а системой связанных интегродифференциальных уравнений . Здесь — матричный оператор, действующий на вектор-столбец .В качестве , например, для акустических волн может служить совокупность переменных (колебательная скорость, приращения плотности, давления, температуры), а для электромагнитных волн — компоненты векторов напряженностей электрического и магнитного полей, электрического смещения и магнитной индукции. В этом случае формальная схема отыскания закона дисперсии такова. Ищем решение системы в виде :

,

Решение будет нетривиальным, только если . Отсюда получаются искомые зависимости . Наличие у дисперсионного уравнения нескольких корней означает, что система может описывать несколько типов собственных волн (мод) среды.

Частотная дисперсия приводит к изменению закономерностей распространения немонохроматических волн. Действительно, различные спектральные компоненты обладают в диспергирующей среде отличающимися скоростями и коэффициентами затухания:

.

В силу дисперсии фазовой скорости в процессе распространения изменяются фазовые соотношения между спектральными компонентами. Следовательно, изменяется результат их интерференции: форма немонохроматической волны искажается. Дисперсия коэффициента поглощения приводит к трансформации частотного спектра волны и дополнительному искажению формы импульса.

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.