Рассмотрим столкновение молекул, одни из которых обладают значениями величин Г, лежащими в заданном интервале , а другие – в интервале . В результате столкновения молекулы приобретают значения величин Г в интервалах соответственно и . Далее для краткости будем говорить о столкновении молекул и с переходом
Произведение числа молекул в единице объёма на вероятность каждой молекулы испытать столкновение с указанным переходом даст полное число таких столкновений, отнесённое к единице объёма в единицу времени. Вероятность такого события (обозначим её через некоторую функцию ) пропорциональна числу молекул в единице объёма и интервалам значений величин каждой из молекул после столкновения. Таким образом, будем считать, что , а число столкновений с переходом , происходящих в единице объёма в единицу времени примет вид
( штрихом обозначены конечные состояния, без штриха - начальные). Вероятность столкновения обладает важным свойством, которое следует из законов механики, относительно обращения знака времени. Если обозначить верхним индексом Т значения всех величин, получившихся при обращении знака времени, то будет иметь место равенство
Обращение времени переставляет состояния “до” и ”после”, а значит необходимо переставить местами аргументы функции вероятности. В частности, указанное равенство справедливо в случае равновесия системы, т.е. можно утверждать, что в равновесии число столкновений с переходом равно числу столкновений с переходом (*). Обозначим через равновесную функцию распределения и запишем
(1)
Произведение дифференциалов представляет собой элемент фазового пространства, который не изменяется при обращении времени (дифференциалы в обеих сторонах равенства можно опустить) . Не изменяется так же потенциальная энергия молекул , и, следовательно, равновесная (больцмановская) функция распределения, которая зависит только от енергии :
Перейти на страницу: 1 2 3
|