Кинетическое уравнение Больцмана даёт микроскопическое описание эволюции состояния газа. Но на практике часто не требуется столь детально описывать процессы, поэтому при рассмотрении задач гидродинамики, задач о протекании процессов в неоднородных или сильно разреженных газах, задач о теплопроводности и диффузии газов и ряда других имеет смысл переходить к менее детальным (а следовательно более простым ) макроскопическим уравнениям. Такое описание применимо к газу, если его макроскопические свойства (температура, плотность, концентрация частиц, давление и т.п.) достаточно медленно меняются вдоль любого, произвольно выбранного направления в газе. Расстояния, на которых происходит существенное изменение макрокскопических параметров, должны значительно превышать длину свободного пробега молекул.
В качестве примера рассмотрим рассмотрим способ получения гидродинамического уравнения.
Выражение определяет плотность распределения молекул газа в пространстве (концентрацию молекул газа). Произведение массы одной молекулы (предполагается, что газ состоит из одинаковых частиц) на плотность распределения молекул даёт массовую плотность газа: . Обозначим через макроскопическую скорость движения газа как целого, а через микроскопическую скорость молекул. Макроскопическая скорость (скорость движения центра масс) может быть определена как средняя величина от микроскопических скоростей молекул
Столкновения не изменяют ни количества сталкивающихся частиц ни их суммарной энергии или импульса (столкновение молекул считается абсолютно упругим ударом). Столкновительная часть изменения функции распределения не может привести к изменению плотности, внутренней энергии, скорости и любых других макроскопических параметров газа в каждом его элементе объёма. Действительно, столкновительная часть изменения полного числа молекул в единице объёма газа даётся равным нулю интегралом:
(14)
Убедимся в справедливости этого равенства следующим способом:
Интегрирование производится по каждой из переменых , а значит можно, не меняя интеграла, произвести переобозначение переменных, например, во втором интеграле :
Последнее выражение, очевидно, равно нулю и, следовательно, справедливым является равенство (14).
|