Конденсатор

Работы П.Н.Яблочкова по конденсаторам относятся к тому периоду времени, когда только начиналось их промышленное применение в телеграфии. Яблочков одним из первых включил конденсатор в цепь переменного (по русской терминологии того времени – перемежающегося) тока. Изучение работы конденсатора на переменном токе имело важнейшее значение для становления и развития электротехники, а в последствии и радиотехники.

Сейчас существует множество видов и разновидностей конденсаторов. Но в основе своей они все повторяют простейший конденсатор, который образуют две металлические пластины, изолированные одна от другой (рис.3).

Чаще всего пластины называют обкладками, а изолирующий слой – диэлектриком.

Миниатюризация - основное направление в совершенствовании конструкции конденсаторов, поскольку от этого зависит дальнейшее уменьшение размеров интегральных схем. Существуют две наиболее распространенные конструкции конденсаторов: одна основана на использовании хрупких керамических слоев толщиной 0,002 см и меньше, а в основе другой лежит технология, позволяющая "сворачивать" плоские структуры площадью с газетный лист в объемные конструкции размером с кусок сахара. Чтобы понять теоретические основы этих технологий, вернемся к самым первым конденсаторам.

Прообразом современных конденсаторов, как уже было сказано, была лейденская банка. В 1746 г. ее усовершенствовал английский ученый, астроном и физик Дж. Бевис. Лейденская банка представляет собой стеклянный сосуд, внутренняя и наружная поверхность которого покрыты двумя листами фольги. Через резиновую пробку в сосуд вставлен металлический стержень так, что он касается внутреннего листа фольги. Внутренний и наружный листы фольги, в обычных условиях имеющие нейтральный заряд, играют роль электродов, если их подсоединить к внешнему источнику электрических зарядов.

Источником зарядов может быть электрическая батарейка, генератор или простая эбонитовая палочка, потертая о шерсть или мех. Если такой палочкой, несущей в себе свободные электроны, коснуться металлического стержня в горлышке сосуда, электроны перетекут с палочки на внутренний электрод. Таким образом отрицательный заряд будет перенесен на внутренний электрод. Поскольку способность накапливать заряды у сосуда ограничена их взаимным отталкиванием, их переход на электрод не может быть бесконечным. Способность накапливать или удерживать заряды называется емкостью.

В лейденской банке емкость увеличивается благодаря наличию второго электрода на внешней стенке сосуда. Если этот электрод заземлить, то заряд, накопленный на внутреннем электроде, будет притягивать из земли такой же по величине заряд противоположного знака. Накопленный на наружном электроде положительный заряд притягивает находящиеся на внутреннем электроде отрицательно заряженные электроны, частично нейтрализуя силы отталкивания, сдерживающие накапливание электронов. Благодаря этому емкость сосуда увеличивается. Однако расти бесконечно она не может.

Имеются два пути увеличения емкости лейденской банки. Один из них заключается в увеличении площади электродов, чтобы дать возможность зарядам рассредоточиться в большем пространстве и тем самым уменьшить силу взаимного отталкивания электронов. Другой путь - уменьшить толщину стеклянной стенки сосуда, разделяющей заряды, скапливающиеся на внутреннем и внешнем электродах. Не надо забывать при этом, что если стекло будет слишком тонким, электроны смогут пройти сквозь него, создавая искровой разряд, что приведет к рассеянию заряда.

Оба пути в лейденской банке трудно реализовать, но они входят в число трех классических способов, к которым прибегают современные ученые и инженеры при разработке новых конструкций конденсаторов. Третье направление увеличения емкости - учет особенностей поведения электронов в изоляторах. Хотя электроны в изоляционном материале неподвижны, они все же могут слегка смещаться под воздействием сил притяжения или отталкивания, действующих со стороны электродов. На одной стороне разделяющего электроды диэлектрика электроны как бы "вспучиваются" под его поверхностью, создавая отрицательный заряд, на другой его стороне они "утопают" в толщу диэлектрика, увеличивая в подповерхностной зоне значение положительного заряда.

Перейти на страницу: 1 2 3

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.