       ты сил М1 = ( f12) r1sin(900 - g) = (f12) l12 и M2 = (f21) r2 sin(900 - b) = (f21) l21 равны и противоположно направлены. На основании этого можно сделать вывод, что при сложении всех моментов внутренних сил они попарно уничтожатся. Суммарный момент всех внешних сил обозначим S Мi , где Mi = [ ri Fi].
Левая часть уравнения ( 4-4а ) с учетом (3 -7) представится в таком виде:
=
= , ( 4-5 )
где величину принято называть моментом инерции твердого тела относительно заданной оси.
Эта величина характеризует распределение массы тела относительно определенной оси. Как следует из определения момента инерции - это величина аддитивная. Момент инерции тела складывается из моментов инерции его отдельных элементов, которые можно рассматривать как материальные точки, т.е.
I = , где ji = mi - момент инерции материальной точки.
При практическом вычислении моментов инерции вместо суммирования используется интегрирование ( суммирование бесконечно малых величин). Если ось, относительно которой вычисляется момент инерции, проходит через центр симметрии тела, то вычисление такого интеграла представляет сравнительно несложную задачу, но в общем случае задачу решить трудно. Для упрощения вычислений полезной оказывается теорема о параллельном переносе осей инерции (теорема Гюйгенса - Штейнера), формулировка которой гласит, что момент инерции относительно любой оси равен сумме момента инерции относительно параллельной оси, проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями, т.е.
Iпроиз = Iцм + m d 2 . ( 4-6)
Для некоторых тел правильной формы значение моментов инерции относительно осей, проходящих через центр их симметрии приведены в таблице 2.
  Таблица 2.
Перейти на страницу: 1 2 3
|