называют изменением момента импульса (радиус ri внесен под знак дифференцирования, т.к. все точки вращаются по окружностям постоянного радиуса ) . Если
      обозначить [ ri mi vi] = [ri pi] = Li , a cyмму = L , то уравнение (4-7) можно за-
 писать так: . ( 4-8 )
L
O mv
r a
A
Рис.15.Момент импуль- са материальной точки. |
Рис.15 поясняет определение момента импульса точечной массы относительно точки О, который вычисляется также как момент силы [ ri mi vi] = [ri pi] = Li . Направление момента импульса определяется правилом правого буравчика - вектор r вращается по кратчайшему пути к вектору mv, а направление движения оси буравчика указывает направление вектора L . Момент импульса относительно оси также определяется аналогично моменту силы относительно оси: |
      L = [ r p ] , ( 4-9 ) где значения r и р соответствуют обозначениям рис.12 ( с заменой f на р ). Для вращательного движения точки L = [r mv] = [r mwr] = w mr 2 = w Ii . Для твердого тела L = wI . ( 4-10 )
Перейти на страницу: 1 2 3
|