Проводники, полупроводники и изоляторы.

1) Вот сейчас кто-нибудь снаружи дверь закроет на ключ, и мы все в связанном состоянии. И будем рассматривать нас тут сейчас с точки зрения квантовой теории.

1) Напомню постулат Бора. Электрон, который вращается вокруг ядра должен излучать электромагнитные волны, терять энергию и упасть на ядро. Каким образом эта проблема была решена Бором для атома водорода (вы в школе Боровскую модель атома водорода изучали)? Простым. Он постулировал, что есть такие орбиты, на которых электрон не излучает, то есть он там крутится и не излучает. Как это стыковалось с наукой? А никак. В электродинамике известно, что если он крутится – должен излучать, а Бор говорит – не излучает. Понятно, что это не решение проблемы. Как теория эту проблему решила, мы уже сейчас знаем: в стационарных состояниях пространственная конфигурация не меняется, она застывшая (это было видно из решения уравнения Шрёдингера), динамические характеристики есть, импульс, момент импульса, но кинематики нет; распределение вероятности электронов в той или иной точке статично, ему соответствует статичное распределение заряда, а статичное распределение заряда ничего не излучает. Вот таким образом утверждение Бора получается не в виде постулата, а как следствие теории, и электродинамика не страдает – нет никакого вращения.

2) Для сравнения, с точки зрения математики, что такое классическая Ньютоновская механика? Теория дифференциальных уравнений второго порядка (Второй закон Ньютона это дифференциальное уравнение второго порядка). Было такое представление, что Господь Бог в своём всеведении додумался до теории дифференциальных уравнений второго порядка и устроил мир предметный, описываемый этими уравнениями. Когда Кеплер установил свой Первый закон, что планеты движутся по эллипсам, у него было точное ощущение, что он проник в замысел создателя; теория конических сечений была самая развитая и любимая наука ещё с античности, и когда Кеплер обнаружил, что планеты движутся по эллипсам (по коническим сечениям), оказалось, что создатель тоже знал теорию конических сечений и устроил там на небе всю эту замечательную вещь именно таким образом. Мы сейчас увидим, если продолжать эту метафору, что создатель продвинулся ещё и дальше в своём математическом образовании.

3) Звёздочка обозначает комплексное сопряжение.

1) Мы можем иметь два вектора и , это столбцы, α и β это числа. Мы можем вектор умножить на α, получим новый вектор, умножить на β, получим новый вектор, взять их сумму (сумма двух матриц-столбцов опять будет матрица-столбец), на то что получится подействовать оператором , мы получим какой-то вектор. А можем сделать иначе: возьмём оператором подействуем на вектор , получим вектор, умножим его на число α, потом оператором подействуем на вектор , получим новый вектор, умножим его на число β и сложим. Если мы получим в результате то же, что и в предыдущем случае, то оператор называется линейным.

Перейти на страницу: 1 2 3 4 5 6 7 8 9

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.