1) Мы сейчас пролезли в это абстрактное пространство, где живут векторы и операторы. Мы изобразили вектор для определённого физического состояния: изготовили частицу с импульсом и энергией E, и мы для неё нарисовали вектор в абстрактном пространстве.
2) А теперь мы думаем, что получится, когда оператором действуем на вектор . Дело в том, что – это собственные векторы оператора , и при его действии получится тот же самый вектор, но выскочит собственное значение: .
3) Здесь не так просто: мы не знаем, как действует оператор на вектор . Но можно показать из того, что , верно следующее равенство.
1) Конечно, вопрос сразу может возникнуть, как понимать функцию от оператора? В конце концов, всякая функция выражается степенными рядами, например , а оператор при действии на вектор даст: , короче, алгебраические действия над операторами известны.
1) Проверка: , , подставляя это в уравнение, мы получим, что .
1) Кстати, ответ на этот вопрос вы уже можете знать только на основании того, что мы уже здесь обсуждали (вот, если вы удерживаете в голове всю цепочку, то ответ можно дать). У нас было коммутационное соотношение , из этого математического факта следовало, что координата не квантуется, ну и импульс, надо ожидать, не будет квантоваться, потому что буквы и равноправны.
1) Что даст скалярное произведение собственного вектора оператора координаты с собственным вектором оператора импульса?
Тогда другой вопрос: скалярное произведение двух собственных векторов оператора импульса. Ответ, он ясен заранее, если это разные векторы, то их скалярное произведение должно равняться нулю (собственные векторы ортогональны), посмотрим, как это сработает. Сначала , вектор сопряжённый (кстати, нельзя сказать, чему равен этот вектор, это просто разложение по координате). Тогда мы имеем: , а теперь факт математический: , и , где . Мораль какая? Если не совпадает с , то скалярное произведение , они ортогональны. При этом мы убили ещё одного зайца – мы нашли нормировочную константу C. Итак, .
Перейти на страницу: 3 4 5 6 7 8 9
|