Магнитомягкие материалы для постоянных и низкочастотных магнитных полей

Технически чистое железо обычно содержит небольшое количество примесей углерода, серы, марганца, кремния и других элементов, ухудшающих его магнитные свойства. Вследствие сравнительно низкого удельного сопротивления технически чистое железо используют довольно редко, в основном для изготовления магнитопроводов постоянного магнитного потока.

Обычное техническичистое железо изготавливают рафинированием чугуна в мартеновских печах или в конверторах; оно имеет суммарное содержание примесей 0,08-0,1%

Кремнистая электротехническая сталь (по ГОСТу электротехническая тонколистовая) является основным магнитомягким материалом массового потребления. Введением в состав этой стали кремния достигается повышение удельного сопротивления, что вызывает снижение потерь на вихревые токи. Кроме того, наличие в стали кремния способствует выделению углерода в виде графита, а также почти полному раскислению стали за счет химического связывания кислорода в SiO2. Последний в виде шлака выделяется из расплава. В результате легирование кремнием приводит к увеличению магнитной проницаемости, уменьшению коэрцитивной силы и снижению потерь на гистерезис. Положительное влияние кремния на магнитную проницаемость стали обусловлено также уменьшением констант магнитной анизотропии и магнитострикции. У стали с содержанием кремния 6,8% константа магнитной анизотропии в три раза меньше, чем у чистого железа, а значение магнитострикции практически равно нулю. При таком содержании кремния сталь обладает наибольшей магнитной проницаемостью. Однако промышленные марки электротехнической стали содержат не более 5% кремния. Это объясняется тем, что кремний ухудшает механические свойсва стали, придает ей хрупкость и ломкость. Такая сталь непрригодна для штамповки. Кроме того, при введении кремния несколько уменьшается индукция насыщения (примерно 0,05 Тл на 1% Si), так как кремний является немагнитным компонентом. Вместе с тем легирование кремнием повышает стабильность магнитных свойств стали во времени.

Свойства стали значительно улучшаются за счет образования магнитной текстуры при холодной прокатке и последующего отжига в водороде.

При холодной прокатке происходит сильное обжатие материала; возникающие деформации вызывают преимущественную переориентацию кристаллических зерен. Отжиг при температуре 900-1000°С не только снимает внутренние механические напряжения, но и сопровождается интенсивной рекристаллизацией (укрупнением зерен). Получается так называемая ребровая текстура.

Текстурованная сталь анизотропна по свойствам: вдоль напрвления прокатки наблюдается существенно более высокая магнитная проницаемость и меньшие потери на гистерезис. Сталь выпускается в виде рулонов, листов и резаной ленты. Она может быть без электроизоляционного покрытия или иметь его. Сталь различных классов предназначается для изготовления магнитных цепей аппаратов, трансформаторов, электричекских машин. Применение ленточных сердечников из текстурованной стали в силовых трансформаторах позволяет уменьшить их массу и габаритные размеры на 20-25%, а в радиотрансформаторах - на 40%.

Листы тонкого проката предназначены в основном для использования в полях повышенной частоты (до 1 кГц). Использование листовых и ленточных сердечников на частотах выше 1 кГц возможно лишь при существенном ограничении магнитной индукции, так , чтобы суммарные потери не превышали допустимого предела. По условиям нагрева и теплоотвода предельно допустимыми принято считать удельные потери 20 Вт/кг.

Перейти на страницу: 1 2 3 4

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.