Анализ и решение проблемы переноса энергии волнами электромагнитного поля

Итак, проблема с выяснением физического механизма переноса энергии волнами ЭМ поля объективно существует, и для ее разрешения требуется, по всей видимости, весьма нестандартный эвристический подход. Однако в наличии у нас имеется только система уравнений электродинамики Максвелла, а потому для разрешения обсуждаемого здесь парадокса ничего не остается, как продолжить критический анализ именно уравнений (1) с целью поиска новых (скрытых) реалий в их физическом содержании. И, действительно, такие реалии в уравнениях (1) были обнаружены [3], а их суть заключена в соотношениях первичной взаимосвязи ЭМ поля с компонентами электрической и магнитной напряженности и поля ЭМ векторного потенциала с электрической и магнитной компонентами:

(a) , (b) , (5)

(c) , (d) .

Соотношение (5a) вводится с помощью уравнения (1d), поскольку дивергенция ротора произвольного векторного поля тождественно равна нулю. Соответственно, (5b) следует из уравнения (1b) при , справедливого для сред с локальной электронейтральностью. Далее подстановка (5a) в (1а) дает (5c), а подстановка (5b) в (1c) приводит к (5d). Здесь два (даже три) представленных соотношения достаточно известны [1], а соотношение (5d), по-видимому, просто не сочли достойным должного внимания.

Однако объединение полученных соотношений в систему (5) оказалось весьма конструктивным, поскольку в этом случае возникает система дифференциальных уравнений, описывающих значительно более сложное и необычное с точки зрения общепринятых воззрений вихревое векторное поле в виде совокупности функционально связанных между собой четырех вихрево-полевых компонент , и ,

, которое физически логично назвать реальным электромагнитным полем

.

Объективность существования указанного четырехкомпонентного вихревого поля

иллюстрируется нетривиальными следствиями из полученных выше соотношений, поскольку подстановки (5c) в (5b) и (5d) в (5a) приводят к системе новых электродинамических уравнений, структурно полностью аналогичной системе традиционных уравнений Максвелла (1), но уже для поля ЭМ векторного потенциала с электрической и магнитной компонентами:

(a) , (b) , (6)

(c) , (d) .

Чисто вихревой характер компонент поля векторного потенциала обеспечивается условием кулоновской калибровки посредством дивергентных уравнений (6b) и (6d), которые при этом представляют собой начальные условия в математической задаче Коши для уравнений (6a) и (6c), что делает эту систему уравнений замкнутой.

Соответственно, математические операции с соотношениями (5) позволяют получить [3] еще две других системы уравнений:

для электрического поля с компонентами и

(a) , (b) , (7)

Перейти на страницу: 1 2 3 4 5 6 7 8

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.