Поэтому в качестве определения отсутствия вращения надо взять условие , (3.2)
где r0 — радиусы-векторы положений равновесия частиц. Написав r
= r
0
+ u
, где u
— смещения при малых колебаниях, имеем v
= r
= u
. Уравнение (3.2) интегрируется по времени, в результате чего получаем , (3.3)
Движение молекулы мы будем рассматривать как совокупность чисто колебательного движения, при котором удовлетворяется условие (3.3), и вращения молекулы как целого. Написав момент импульса в виде
,
мы видим, что, в соответствии с определением (3.2) отсутствия вращения, под колебательным моментом надо понимать сумму . Необходимо, однако, иметь в виду, что этот момент, являясь лишь частью полного момента системы, сам по себе отнюдь не сохраняется. Поэтому каждому колебательному состоянию можно приписать лишь среднее значение колебательного момента.
Молекулы, не обладающие ни одной осью симметрии более чем второго порядка, относятся к типу асимметричного волчка. У молекул этого типа все частоты колебаний — простые (их группы симметрии обладают только одномерными неприводимыми представлениями). Поэтому все колебательные уровни не вырождены. Но во всяком невырожденном состоянии средний момент импульса обращается в нуль. Таким образом, у молекул типа асимметричного волчка средний колебательный момент во всех состояниях отсутствует.
Если в числе элементов симметрии молекулы имеется одна ось более чем второго порядка, молекула относится к типу симметричного волчка. Такая молекула обладает колебаниями как с простыми, так и с двукратными частотами. Средний колебательный момент первых снова обращается в нуль. Двухкратным же частотам, соответствует отличное от нуля среднее значение проекции момента на ось молекулы.
Легко найти выражение для энергии вращательного движения молекулы (типа симметричного волчка) с учетом колебательного момента.
. (3.4)
Искомая энергия есть среднее значение Hвр. Члены в (3.5), содержащие квадраты компонент J
, дают чисто вращательную энергию. Члены, содержащие квадраты компонент J
(v), дают не зависящие от вращательных квантовых чисел, постоянные; их можно опустить. Члены же, содержащие произведения компонент J
и J
(0), представляют собой интересующий нас здесь эффект взаимодействия колебаний молекулы с ее вращением; его называют кориолисовым взаимодействием (имея в виду его соответствие кориолисовым силам в классической механике).
При усреднении этих членов надо иметь в виду, что средние значения поперечных (x, h) компонент колебательного момента равны нулю. Поэтому для среднего значения энергии кориолисового взаимодействия получаем: ,
где k (целое число) есть, проекция полного момента на ось молекулы, a — среднее значение проекции колебательного момента, характеризующее данное колебательное состояние; kv, в противоположность k, отнюдь не является целым числом.
Наконец, рассмотрим молекулы типа шарового волчка. Сюда относятся молекулы с симметрией какой-либо из кубических групп. Такие молекулы обладают одно-, дву- и трехкратными частотами. Вырождение колебательных уровней, как всегда, частично снимается ангармоничностью; после учета этих эффектов остаются, помимо невырожденных, лишь дву- и трехкратно вырожденные уровни. Мы будем сейчас говорить именно об этих расщепленных ангармоничностью уровнях.
Легко видеть, что у молекул типа шарового волчка средний колебательный момент отсутствует не только в невырожденных, но и в двукратно вырожденных колебательных состояниях. Это следует уже из простых соображений, основанных на свойствах симметрии. Действительно, векторы средних моментов в двух состояниях, относящихся к одному вырожденному уровню энергии, должны были бы преобразовываться друг в друга при всех преобразованиях симметрии молекулы. Но ни одна из кубических групп симметрии не допускает существования двух преобразующихся лишь друг в друга направлений; преобразуются друг в друга лишь совокупности не менее чем трех направлений.
Перейти на страницу: 1 2 3
|