Дросселирование пара

pT

-координаты, получим кривую 1 инверсии (рис. 5), в каждой точке которой дроссель-эффект равен нулю и температура газа при дросселировании не изменяется. Точки на поле

Рис 6. Инверсионная кривая азота

в PT-

координатах.

Рис 5. Инверсионная кривая воздуха:

1-расчетная;

2-экспериментальная.

диаграммы внутри кривой соответствуют охлаждению газа, а снаружи кривой-подогреву газа. На этом же рисунке дана экспериментальная кривая 2 инверсии

воздуха. Ее расхождение с теоретической кривой объясняется тем, что уравнение Ван-дер-Ваальса лишь приближенно отражает реальную связь параметров состояния воздуха.

В качестве еще одного примера на рис. 6 приведена кривая инверсии азота. Внутри области, ограниченной кривой инверсии, ai, т.е. газ при дросселировании охлаждается. Вне этой области ai, т.е. температура газа при дросселировании повышается. Аналогичный характер имеют кривые инверсии и других веществ.

Дифференциальный дроссель-эффект используется для определения температуры газа после дросселирования при малом уменьшении давления. При значительном снижении давления изменение температуры газа определяется интегральным дроссель-эффектом Джоуля-Томсона

(13)

Практически интегрирование этого уравнения может быть выполнено по частям с учетом зависимости (dT/dp)i от давления и температуры.

Процесс дросселирования водяного пара немного отличается от дросселирования реальных газов.

За изменением состояния водяного пара при дросселировании удоб­но проследить, пользуясь диаграммой s

i

(рис. 7).

Поскольку энтальпия пара после дросселирования имеет то же зна­чение, что и до него, проведем на этой диаграмме одну горизонтальную линию 1 — 3 (рис. 7) в области перегретого пара, а другую а — е — в области влажного пара. Начальное состояние пара, отображаемое точ­кой 1, характеризуется давлением 10 Мн/м2 и температурой 500° С. Из рисунка

Рис 7. Процесс дросселирования пара на

si-

диаграмме

Перейти на страницу: 1 2 3 4 5 6 7

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.