Закон збереження енергії.

Вище було показано, що приріст кінетичної енергії системи дорівнює роботі, яку здійснюють всі сили, що діють на всі частинки системи. Поділивши ці сили на зовнішні та внутрішні, а внутрішні – на потенціальні і дисипативні, запишемо попереднє твердження так:

.

Тепер врахуємо, що робота внутрішніх потенціальних сил дорівнює спаду власної потенціальної енергії системи, тобто . Тоді попередній вираз приймає вигляд:

. (5)

введемо поняття повної механічної енергії системи або просто механічної енергії, як суму кінетичної та потенціальної енергії:

. (6)

очевидно, енергія залежить від швидкості частинок системи, характеру взаємодії між ними та конфігурації системи. Крім того, енергія , як і потенціальна енергія , визначається з точністю до приросту несуттєвої довільної сталої і є величиною неадитивною, тобто енергія системи не дорівнює в загальному випадку сумі енергій її окремих частин. Тоді:

,

де – механічна енергія ‑тої частини системи, – потенціальна енергія взаємодії її окремих частин.

Повернемося до формули (5). Перепишемо її з врахуванням (6) у вигляді:

. (7)

Цей вираз справедливий при нескінченно малій зміні конфігурації системи. При скінченній зміні матимемо:

, (8)

тобто приріст механічної енергії системи дорівнює алгебраїчній сумі робіт всіх зовнішніх сил і всіх внутрішніх дисипативних сил.

Рівняння (7) можна представити і в іншій формі, поділивши обидві частини на відповідний проміжок часу . Тоді:

, (9)

тобто похідна механічної енергії системи по часу дорівнює алгебраїчній сумі потужностей всіх зовнішніх сил і всіх внутрішніх дисипативних сил.

Рівняння (7)‑(9) справедливі як в інерціальній, так і в неінерціальній системах відліку. Слід тільки мати на увазі, що в неінерціальній системі відліку необхідно врахувати роботу (потужність) і сил інерції, які відіграють роль зовнішніх сил, тобто під слід розуміти алгебраїчну суму робіт зовнішніх сил взаємодії і роботу сил інерції . Щоб підкреслити цю обстановку, перепишемо рівняння (8) у вигляді:

Перейти на страницу: 1 2

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.