Вище було показано, що приріст кінетичної енергії системи дорівнює роботі, яку здійснюють всі сили, що діють на всі частинки системи. Поділивши ці сили на зовнішні та внутрішні, а внутрішні – на потенціальні і дисипативні, запишемо попереднє твердження так:
.
Тепер врахуємо, що робота внутрішніх потенціальних сил дорівнює спаду власної потенціальної енергії системи, тобто . Тоді попередній вираз приймає вигляд:
. (5)
введемо поняття повної механічної енергії системи або просто механічної енергії, як суму кінетичної та потенціальної енергії:
. (6)
очевидно, енергія залежить від швидкості частинок системи, характеру взаємодії між ними та конфігурації системи. Крім того, енергія , як і потенціальна енергія , визначається з точністю до приросту несуттєвої довільної сталої і є величиною неадитивною, тобто енергія системи не дорівнює в загальному випадку сумі енергій її окремих частин. Тоді:
,
де – механічна енергія ‑тої частини системи, – потенціальна енергія взаємодії її окремих частин.
Повернемося до формули (5). Перепишемо її з врахуванням (6) у вигляді:
. (7)
Цей вираз справедливий при нескінченно малій зміні конфігурації системи. При скінченній зміні матимемо:
, (8)
тобто приріст механічної енергії системи дорівнює алгебраїчній сумі робіт всіх зовнішніх сил і всіх внутрішніх дисипативних сил.
Рівняння (7) можна представити і в іншій формі, поділивши обидві частини на відповідний проміжок часу . Тоді:
, (9)
тобто похідна механічної енергії системи по часу дорівнює алгебраїчній сумі потужностей всіх зовнішніх сил і всіх внутрішніх дисипативних сил.
Рівняння (7)‑(9) справедливі як в інерціальній, так і в неінерціальній системах відліку. Слід тільки мати на увазі, що в неінерціальній системі відліку необхідно врахувати роботу (потужність) і сил інерції, які відіграють роль зовнішніх сил, тобто під слід розуміти алгебраїчну суму робіт зовнішніх сил взаємодії і роботу сил інерції . Щоб підкреслити цю обстановку, перепишемо рівняння (8) у вигляді:
|