Закон збереження енергії.

. (10)

Отже, ми прийшли до важливого висновку: механічна енергія системи може змінюватися під дією як зовнішніх сил, так і внутрішніх дисипативних сил (тобто під дією алгебраїчної суми робіт всіх цих сил). Звідси, безпосередньо, випливає і другий важливий висновок – закон збереження механічної енергії: в інерціальній системі відліку механічна енергія замкнутої системи частинок, в якій немає дисипативних сил, зберігається в процесі руху, тобто:

. (11)

Таку систему називають консервативною. Зауважимо, що при русі замкнутої консервативної системи зберігається саме повна механічна енергія, а кінетична і потенціальна в загальному випадку змінюються. Однак ці зміни відбуваються завжди так, що приріст однієї з них дорівнює спаду іншої, тобто . Зрозуміло, що це положення справедливе в інерціальних системах відліку.

Далі, з рівняння (8) випливає, що якщо замкнута система неконсервативна, тобто в ній присутні дисипативні сили, то механічна енергія такої системи спадає:

. (12)

Можна сказати: зменшення механічної енергії зумовлене тим, що вона витрачається на роботу проти дисипативних сил, які діють в системі. Однак таке пояснення є формальним, оскільки воно не розкриває фізичної природи дисипативних сил.

Більш глибоке осмислення цього питання привело до фундаментального висновку про існування в природі універсального закону збереження енергії:

енергія ніколи не виникає і не зникає, вона може лише переходити з однієї форми в іншу, або обмінюватися між окремими частинами матерії.

При цьому поняття енергії довелось розширити введенням нових форм її – енергія електромагнітного поля, хімічна енергія, ядерна енергія та ін.

Універсальний закон збереження енергії охоплює, таким чином, і ті фізичні явища, на які закони Ньютона не поширюються, Тому він не може бути виведеним із цих законів, а повинен розглядатися як самостійний закон, який представляє собою одне із найбільш широких узагальнень дослідних фактів.

Повертаючись до рівняння (12), можна сказати: при зменшенні механічної енергії замкнутої системи завжди виникає еквівалентна кількість енергії інших видів, які не пов’язані з видимим рухом, в цьому розумінні рівняння (7)‑(9) можна розглядати як більш загальне формування закону збереження енергії, в якому вказана причина зміни механічної енергії в незамкнутій системі.

Механічна енергія може зберігатися й у незамкнутих системах, але це відбувається лише в тих випадках, коли згідно з рівнянням (8) зменшення цієї енергії за рахунок роботи проти внутрішніх дисипативних сил компенсується надходженням енергії за рахунок роботи зовнішніх сил.

Перейти на страницу: 1 2 

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.