. (10)
Отже, ми прийшли до важливого висновку: механічна енергія системи може змінюватися під дією як зовнішніх сил, так і внутрішніх дисипативних сил (тобто під дією алгебраїчної суми робіт всіх цих сил). Звідси, безпосередньо, випливає і другий важливий висновок – закон збереження механічної енергії: в інерціальній системі відліку механічна енергія замкнутої системи частинок, в якій немає дисипативних сил, зберігається в процесі руху, тобто:
. (11)
Таку систему називають консервативною. Зауважимо, що при русі замкнутої консервативної системи зберігається саме повна механічна енергія, а кінетична і потенціальна в загальному випадку змінюються. Однак ці зміни відбуваються завжди так, що приріст однієї з них дорівнює спаду іншої, тобто . Зрозуміло, що це положення справедливе в інерціальних системах відліку.
Далі, з рівняння (8) випливає, що якщо замкнута система неконсервативна, тобто в ній присутні дисипативні сили, то механічна енергія такої системи спадає:
. (12)
Можна сказати: зменшення механічної енергії зумовлене тим, що вона витрачається на роботу проти дисипативних сил, які діють в системі. Однак таке пояснення є формальним, оскільки воно не розкриває фізичної природи дисипативних сил.
Більш глибоке осмислення цього питання привело до фундаментального висновку про існування в природі універсального закону збереження енергії:
енергія ніколи не виникає і не зникає, вона може лише переходити з однієї форми в іншу, або обмінюватися між окремими частинами матерії.
При цьому поняття енергії довелось розширити введенням нових форм її – енергія електромагнітного поля, хімічна енергія, ядерна енергія та ін.
Універсальний закон збереження енергії охоплює, таким чином, і ті фізичні явища, на які закони Ньютона не поширюються, Тому він не може бути виведеним із цих законів, а повинен розглядатися як самостійний закон, який представляє собою одне із найбільш широких узагальнень дослідних фактів.
Повертаючись до рівняння (12), можна сказати: при зменшенні механічної енергії замкнутої системи завжди виникає еквівалентна кількість енергії інших видів, які не пов’язані з видимим рухом, в цьому розумінні рівняння (7)‑(9) можна розглядати як більш загальне формування закону збереження енергії, в якому вказана причина зміни механічної енергії в незамкнутій системі.
Механічна енергія може зберігатися й у незамкнутих системах, але це відбувається лише в тих випадках, коли згідно з рівнянням (8) зменшення цієї енергії за рахунок роботи проти внутрішніх дисипативних сил компенсується надходженням енергії за рахунок роботи зовнішніх сил.
|