Дисперсионные эффекты часто проявляются при распространении электромагнитных волн. Покажем, как видоизменяются исходные уравнения при учете этих свойств. Система уравнений Максвелла сохраняет свой вид. Свойства среды должны быть учтены в материальных уравнениях:
.
Для статических и медленно изменяющихся полей можно написать
,
где — константы, т. е. значения и в некоторой точке среды и в некоторый момент времени определяются значениями и в той же точке и в тот же момент времени.
При быстром изменении поля вследствие инерции внутренних движений и наличия пространственной микроструктуры среды наблюдается зависимость поляризации от поля, действующего в других точках и в другие моменты времени. При этом нужно иметь в виду, что в силу условия причинности поляризация и, следовательно, индукция зависят от полей, действовавших только в предыдущие моменты времени.
Сказанное можно записать математически, представляя материальные уравнения в общей интегральной форме:
, (1.1)
, (1.2)
. (1.3)
По дважды встречающимся индексам здесь и везде в дальнейшем предполагается суммирование.
Выражения (1.1) — (1.3) представляют собой наиболее общую функциональную форму записи материальных уравнений для линейной среды. В этой записи учтена возможность проявления нелокальности, запаздывания и анизотропных свойств среды.
В частном случае, если среда однородна в пространстве и не изменяет со временем своих свойств, материальные характеристики , , должны зависеть лишь от разностей координат и времени . Тогда
, (1.4)
, (1.5)
. (1.6)
Связь между электрическим смещением и магнитной индукцией, полями и поляризациями среды определяется соотношениями
. (1.7)
Поэтому материальные уравнения можно записать также в виде
, (1.8)
где — тензор восприимчивости среды. Аналогичное выражение можно записать для .
Для проведения дальнейшего анализа удобно разложить по плоским волнам:
.
После обычного перехода в фурье-представление в выражениях для и получаем простую зависимость
, (1.9)
, (1.9)
где
. (1.10)
Видно, что компоненты тензора диэлектрической проницаемости зависят в общем случае от частоты и от волнового вектора волны.
Аналогичный вывод можно сделать для магнитной проницаемости и проводимости .
Таким образом, дисперсия при распространении электромагнитных волн может проявляться двояким образом — как частотная (за счет зависимости , , от частоты) и как пространственная (за счет зависимости этих же параметров от волнового вектора ). Частотная дисперсия существенна, если частота электромагнитных волн близка к собственным частотам колебаний в среде. Пространственная же дисперсия становится заметной, когда длина волны сравнима с некоторыми характерными размерами.
Перейти на страницу: 1 2 3
|