Развитие идеи о планетарной модели атома.

Не сразу ученые пришли к правильным представлениям о строе­нии атома.

Один из первых экспериментальных фактов, свидетельствующих о сложности атомов, о существовании у них внутренней структуры элек­трической природы, был установлен Фарадеем. На основании опытов по электролизу различных солей и других соединений можно было с уве­ренностью утверждать, что электрические заряды имеются в атомах всех элементов. Однако надо было выяснить, что представляет собой электричество, является ли оно непрерывной субстанцией или в при­роде существуют неделимые «атомы электричества».

Так как при электролизе одинаковое количество атомов любого одновалентного элемента всегда переносит одно и то же количество электричества, можно было предположить, что в природе существует «атом количества электричества», одинаковый в атомах всех элемен­тов.

Этот заряд получил название элементарного заряда. В 1891 году ирландский физик Дж. Стоней предложил для него название электрон Решающие эксперименты, доказавшие реальность существования элек­тронов, были выполнены английским физиком Дж. Томсоном в 1899 году. Модель атома по Томсону представляла собой положительно за­ряженную жидкость, в которой плавают отрицательные электроны. На протяжении 12 лет эта модель представлялась весьма правдоподобной. Но в 1911 году из опытов Резерфорда, сыгравшего большую роль в по­нимании строения атома, непосредственно вытекает п л а н е т а р н а я модель атома. Основные положения теории атома сформулировал Нильс Бор.

Этот величайший переворот в физике произошел на рубеже ХХ века.

Именно в это время великие принципы классической физики обна­ружили свою несостоятельность перед лицом новых фактов. Физики пе­решли границы новой неведомой области, имя которой - микромир.

Удар по представлениям, ставшим привычными, оказался тем бо­лее чувствительным, что в конце ХIХ века даже выдающиеся физики были убеждены в том, что основные законы природы раскрыты, и оста­ется использовать их для объяснения различных явлений и процессов.

Ведь до этого фундаментальные принципы классической механики Ньютона, электродинамики Максвелла и др. разделов физики получали все новые и новые подтверждения своей справедливости.

Никому не приходило в голову, что с уменьшением, к примеру, массы тел или увеличением их скорости законы Ньютона, давно счи­тавшиеся чуть ли не самоочевидными, могут оказаться несостоятель­ными.

И вот выяснилось, что атомы подвержены разрушению. Странные свойства обнаружил электрон. Его масса выростала со скоростью. Ос­новная характеристика тела - масса, считавшаяся со времен Ньютона неизменной, оказалась зависящей от скорости. А ведь массу было при­нято рассматривать как меру количества вещества, содержащегося в теле.

Но эти трудности оказались трамплином для новых теорий ХХ века - теории относительности и квантовой механики.

Классическая физика оказалась частным, или, точнее, предельным случаем теории относительности при скоростях, значительно меньших скорости света.

Термин «Э. ч.» часто употребляется в современной физике не в своём точном значении, а менее строго — для наименования большой группы мельчайших частиц материи, подчинённых условию, что они не являются атомами или атомными ядрами (исключение составляет про­стейшее ядро атома водорода — протон). Как показали исследования, эта группа частиц необычайно обширна. К ней относятся: протон (р), нейтрон (n) и электрон (e-) , фотон (g), пи-мезоны (p), мюоны (m), ней­трино трёх типов (электронное ve, мюонное vm и связанное с т. н. тяжё­лым лептоном vt), т. н. странные частицы (К-мезоны и гипероны), разно­образные резонансы, открытые в 1974—77 y-частицы, «очарованные» частицы, ипсилон-частицы (¡) и тяжёлые лептоны (t+, t—) — всего более 350 частиц, в основном нестабильных. Число частиц, включаемых в эту группу, продолжает расти и, скорее всего, неограниченно велико; при этом большинство перечисленных частиц не удовлетворяет строгому определению элементарности, поскольку, по современным представле­ниям, они являются составными системами (см. ниже). Использование названия «Э. ч.» ко всем этим частицам имеет исторические причины и связано с тем периодом исследований (начало 30-х гг. 20 в.), когда единственно известными представителями данной группы были протон, нейтрон, электрон и частица электромагнитного поля — фотон. Эти че­тыре частицы тогда естественно было считать элементарными, т. к. они служили основой для построения окружающего нас вещества и взаимо­действующего с ним электромагнитного поля, а сложная структура про­тона и нейтрона не была известна.

Перейти на страницу: 1 2

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.