(8)
Это уравнение уже не содержит никаких индивидуальных параметров, выделяющих конкретное движение. Это уравнение и есть уравнение Шрёдингера в отсутствии силовых полей.
Обобщим теперь полученное уравнение (8) на случай движений в силовых полях. Ограничимся случаем потенциальных силовых полей, которые, как и в классической механике, характеризуются потенциальной функцией или потенциальной энергией U( ). Заметим теперь, что ħ/дt имеет размерность энергии, Значит, одинаковую размерность имеют
и величины и U( )Ψ. Поэтому прибавление в правой части уравнения (8) слагаемого U( )Ψ не меняет размерности этого уравнения. Можно думать, что полученное таким путем уравнение
(9)
будет правильно учитывать влияние потенциального силового поля на движение частицы. Это и есть уравнение Шрёдингера. Это так называемое уравнение Шрёдингера, зависящее от времени. Его также называют общим уравнением Шрёдингера.
Путь, которым мы пришли к уравнению Шрёдингера, конечно, не может служить доказательством этого уравнения. Но уравнение Шрёдингера – существенно новый принцип. Его нельзя логически вывести из старых принципов, в которых он не содержится. Единственным доказательством уравнения Шрёдингера является только опыт – опытная проверка всех выводимых из него следствий. Такую проверку уравнение Шрёдингера выдержало.
В уравнении (9) в неявной форме уже заложена двойственная – корпускулярно-волновая –природа вещества. Согласно интерпретации волновой функции Ψ частица не локализована. Она, как принято говорить, с определенной вероятностью «размазана» в пространстве. Казалось бы, что при написании уравнения (9) это обстоятельство с самого начала должно быть принято во внимание, т. е. под U следовало бы понимать потенциальную энергию частицы с учетом всех возможных положений ее и их вероятностей. На самом деле в уравнении (9) это не предполагается. Потенциальная функция U( ) рассматривается в нем так же, как в классической физике, т. е. как функция локализованной, в частности точечной, частицы в силовом поле. Например, в атоме водорода для электрона в поле ядра полагают U(r) = -е2/r, т. е. поступают так же, как если бы обе эти частицы были локализованы.
Уравнение Шрёдингера – первого порядка по времени. Отсюда следует, что заданием волновой функции Ψ во всем пространстве в какой-либо момент времени (например, принимаемый за начальный) однозначно определяется функция Ψ также во всем пространстве во все последующие моменты времени. Не следует смотреть на это утверждение как на выражение принципа причинности в квантовой механике. Ибо выражаемая им «причинность» относится к волновой функции Ψ. А волновая функция связана с реально наблюдаемыми объектами вероятностными соотношениями. Поэтому квантовая механика, по крайней мере в современной ее форме, является принципиально статистической теорией.
Перейти на страницу: 1 2 3 4 5
|