Условия, которым должны удовлетворять решения уравнения Шрёдингера, имеют весьма общий характер. Прежде всего волновая функция должна быть однозначной и непрерывной во всем пространстве. Требование непрерывности сохраняется и в тех случаях, когда само поле
U (х, у, z) имеет поверхности разрыва. На такой поверхности должны оставаться непрерывными как волновая функция, так и ее производные. Непрерывность последних, однако, не имеет места, если за некоторой поверхностью потенциальная энергия U обращается в бесконечность. В область пространства, где U = ∞, частица вообще не может проникнуть, т. е. в этой области должно быть везде ψ = 0. Непрерывность ψ требует, чтобы на границе этой области ψ обращалось в нуль; производные же от ψ в этом случае испытывают, вообще говоря, скачок.
Вид волнового уравнения физической системы определяется ее гамильтонианом, приобретающим в силу этого фундаментальное значение во всем математическом аппарате квантовой механики.
Вид гамильтониана свободной частицы устанавливается уже общими требованиями, связанными с однородностью и изотропией пространства и принципом относительности Галилея. В классической механике эти требования приводят к квадратичной зависимости энергии частицы от ее импульса: Е = р2/2т, где постоянная т называется массой частицы. В квантовой механике те же требования приводят к такому же соотношению для собственных значений энергии и импульса – одновременно измеримых сохраняющихся (для свободной частицы) величин.
Но для того чтобы соотношение Е = р2/2т имело место для всех собственных значений энергии и импульса, оно должно быть справедливым и для их операторов:
(17)
Подставив сюда оператор импульса , получим гамильтониан свободно движущейся
частицы в виде:
где Δ= д2/дх2 + д2/ду2 + д2/дz2 — оператор Лапласа.
В классической (нерелятивистской) механике взаимодействие с внешним полем описывается аддитивным членом в функции Гамильтона – потенциальной энергией взаимодействия U. являющейся функцией координат. Прибавлением такой же функции к гамильтониану системы описывается и взаимодействие в квантовой механике – гамильтониан для частицы, находящейся во внешнем поле:
(18)
где U(x,y,z) – потенциальная энергия частицы во внешнем поле.
Если поле U (х, у, г) нигде не обращается в бесконечность, то волновая функция тоже должна быть конечной во всем пространстве. Это же условие должно соблюдаться и в тех случаях, когда U обращается в некоторой точке в бесконечность, но не слишком быстро - как l/rs с s < 2.
Пусть Umin есть минимальное значение функции U(х, у, г). Поскольку гамильтониан частицы есть сумма двух членов – операторов кинетической и потенциальной U энергий, то среднее значение энергии в произвольном состоянии равно сумме Ē = + Ū. Но все собственные значения оператора (совпадающего с гамильтонианом свободной частицы) положительны; поэтому и среднее значение > 0. Имея также в виду очевидное неравенство Ū > Umin, найдем, что и Ē > Umln . Поскольку это неравенство имеет место для любого состояния, то ясно, что оно справедливо и для всех собственных значений энергии:
Перейти на страницу: 1 2 3 4
|