En>Umin. (19)
Рассмотрим частицу, движущуюся в силовом поле, исчезающем на бесконечности; функцию U(х, у, z), как обычно принято, определим так, чтобы на бесконечности она обращалась в нуль. Легко видеть, что спектр отрицательных собственных значений энергии будет тогда дискретным, т. е. все состояния с Е < 0 в исчезающем на бесконечности поле являются связанными. Дей-ствительно, в стационарных состояниях непрерывного спектра, соответствующих инфинитному движению, частица находится на бесконечности. Но на достаточно больших расстояниях наличием поля можно пренебречь, и движение частицы может рассматриваться как свободное; при свободном, же движении энергия может быть только положительной.
Напротив, положительные собственные значения образуют непрерывный спектр и соответствуют инфинитному движению; при Е > 0 уравнение Шрёдингера, вообще говоря, не имеет (в рассматриваемом поле) решений, для которых бы интеграл сходился.
Обратим внимание на то, что в квантовой механике при финитном движении частица может находиться и в тех областях пространства, в которых Е < V; вероятность |ψ|2 нахождения частицы хотя и стремится быстро к нулю в глубь такой области, но на всех конечных расстояниях все же отлична от нуля. В этом отношении имеется принципиальное отличие от классической механики, в которой частица вообще не может проникнуть в область, где U > Е. В классической механике невозможность проникновения в эту область связана с тем, что при Е < U кинетическая энергия была бы отрицательной, т. е. скорость – мнимой. В квантовой механике собственные значения кинетической энергии тоже положительны; тем не менее, мы не приходим здесь к противоречию, так как если процессом измерения частица локализуется в некоторой определенной точке пространства, то в результате этого же процесса состояние частицы нарушается таким образом, что она вообще перестает обладать какой-либо определенной кинетической энергией.
Если во всем пространстве U (х, у, z) > 0 (причем на бесконечности U → 0), то в силу неравенства (19) имеем Еп > 0. Поскольку, с другой стороны, при Е > 0 спектр должен быть непрерывным, то мы заключаем, что в рассматриваемом случае дискретный спектр вообще отсутствует, т. е. возможно только инфинитное движение частицы.
Предположим, что U в некоторой точке (которую выберем в качестве начала координат)
обращается в – ∞ по закону
U≈ –α/rs (a > 0). (20)
Рассмотрим волновую функцию, конечную в некоторой малой области (радиуса r0) вокруг начала координат и равную нулю вне ее. Неопределенность в значениях координат частицы в таком волновом пакете порядка r0 ; поэтому неопределенность в значении импульса ~ħ/r0. Среднее значение кинетической энергии в этом состоянии порядка величины ħ2/ , а среднее значение потенциальной энергии ~ – α /. Предположим сначала, что s > 2.
Перейти на страницу: 1 2 3 4
|