Геометрическая оптика

Арабский физик Альгазен (1038) в своих исследованиях развил ряд вопросов оптики. Он занимался изучением глаза, преломлением света, отражением света в вогнутых зеркалах. При изучении пре­ломления света Альгазеи, в противоположность Птолемею, доказал, что углы падения и преломления не пропорциональны, что было толчком к дальнейшим исследованиям с целью отыскания закона преломления. Альгазену известна увеличительная способность сферических стеклянных сегментов. По вопросу о природе света Альгазен стоит на правильных позициях, отвергая теорию зри­тельных лучей. Альгазен исходит из представления, что из каждой точки светящегося предмета исходят лучи, которые, достигая глаза, вызывают зрительные ощущения. Альгазен считал, что свет обладает конечной скоростью распространения, что само по себе представ­ляет крупный шаг в понимании природы света. Альгазен дал пра­вильное объяснение тому, что Солнце и Луна кажутся на горизонте больше, чем в зените; он объяснял это обманом чувств.

Условия для развития науки в период средневековья были край­не неблагоприятны. Философы-схоласты считали, что наука долж­на доказывать истину церковного учения. Влияние прогрессивных начал арабской науки, труды античных мыслителей встречали сопротивление со стороны ведущих представителей христианской церкви.

XIV столетие характеризуется особенно ревностным стремле­нием инквизиции к искоренению всяких проблесков прогрессивных течений в науке. Поэтому не удивительно, что это столетие особен­но бедно по своим результатам и в области оптики.

Эпоха Возрождения. Период между XIV столетием и первой половиной XVII столетия является для Западной Европы переход­ным этапом от феодализма к капиталистическому способу произ­водства. Ряд крупнейших открытий, из которых в первую очередь следует назвать открытие Колумбом Америки, изобретение книгопе­чатания, обоснование Коперником гелиоцентрической системы мира, способствовал общему прогрессу. Происходит постепенный общий подъем экономики, техники, культуры, искусства, усилива­ется борьба прогрессивных мировоззрений с церковной схоласти­кой. В области науки постепенно побеждает экспериментальный метод изучения природы. В этот период в оптике был сделан ряд выдающихся изобретений и открытий. Франциску Мавролику (1494 —1575) принадлежит заслуга достаточно верного объяснения действии очков. Мавролик также нашел, что вогнутые линзы не собирают, а рассеивают лучи. Им было установлено, что хрусталик является важнейшей частью глаза, и сделано заключение о причи­нах дальнозоркости и близорукости как следствиях ненормального преломления света хрусталиком Мавролик дал правильное объя­снение образованию изображений Солнца, наблюдаемых при про­хождении солнечных лучей через малые отверстия. Далее следует назвать итальянца Порта (1538—1615), который в 1589 г. изобрел камеру-обскуру — прообраз будущего фотоаппарата. Несколькими годами позже были изобретены основные оптические инструменты — микроскоп и зрительная труба.

Изобретите микроскопа (1590) связывают с именем голланд­ского мастера-оптика Захария Янсена. Зрительные трубы начали изготовлять примерно одновременно (1608—1610) голландские оп­тики Захарий Янсен, Яков Мециус и Ганс Липперсгей. Изобрете­ние этих оптических инструментов привело в последующие годы к крупнейшим открытиям в астрономии и биологии. Немецкому физику и астроному Н. Кеплеру (1571—1630) принадлежат фунда­ментальные работы по теории оптических инструментов и физиоло­гической оптике, основателем которой он по праву может быть наз­ван, Кеплер много работал над изучением преломления света.

Большое значение для геометрической оптики имел принцип Ферма, названный так по имени сформулировавшего его француз­ского ученого Пьера Ферма (1601—1665). Этот принцип устанавли­вал, что свет между двумя точками распространяется по такому пути, на прохождение которого затрачивает минимум времени. Отсюда следует, что Ферма, в противоположность Декарту, считал скорость распространения света конечной. Знаменитый итальян­ский физик Галилей (1564—1642) не проводил систематических ра­бот, посвященных исследованию световых явлений. Однако и в оптике ему принадлежат работы, принесшие науке замечательные плоды. Галилей усовершенствовал зрительную трубу и впервые применил ее к астрономии, в которой он сделал выдающиеся откры­тия, способствовавшие обоснованию новейших воззрений на строе­ние Вселенной, базировавшихся на гелиоцентрической системе Коперника. Галилею удалось создать зрительную трубу с увеличе­нием, рамным 30, что во много раз превосходило увеличение зри­тельных труб первых ее изобретателей. С ее помощью он обнаружил горы и кратеры на поверхности Луны, открыл спутники у планеты Юпитер, обнаружил звездную структуру Млечного Пути и т. д. Галилей пытался измерить скорость света в земных условиях, но не достиг успеха ввиду слабости экспериментальных средств, имев­шихся для этой цели. Отсюда следует, что Галилей уже имел пра­вильные представления о конечной скорости распространения света. Галилей наблюдал также солнечные пятна. Приоритет открытия солнечных пятен Галилеем оспаривал ученый-иезуит Патер Шейнер (1575—1650), которым провел точные наблюдения солнечных пятен и солнечных факелов с помощью зрительной трубы, устроен­ной по схеме Кеплера. Замечательным в работах Шейнера являет­ся то, что ом превратил зрительную трубу в проекционный прибор, выдвигая окуляр больше, чем ун> было нужно для ясного видения глазом, это давало возможность получить изображение Солнца на экране и демонстрировать ого при различной степени увеличения нескольким лицам одновременно.

Перейти на страницу: 1 2 3 4 5 6 7

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.