Геометрическая оптика

Рис 1

На рисунке 1 изображена схема, объясняющая отражение плоской световой волны Е от плоской границы раздела SS двух оптически разнородных сред. Цифрами /, 2, 3, 4, . обозначены параллельные лучи, вдоль которых распространяется энергия вол­ны, один из плоских фронтов которой изображен прямой (следом) Е, нормальной к лучам. Расстояния между лучами /, 2, 3, 4, . выбраны равными между собой. Световые колебания, бегущие вдоль луча /, возбуждают в точке Ог элементарную сферическую волну /, которая за время At пробегает путь 01А — сАt. Ана­логичные световые колебания возбуждают в точках 02, 03, 04, . элементарные сферические волны //, ///, IV, . . За время Аt колебание, идущее вдоль луча 2, пробежит путь ОA2, и после встре­чи с поверхностью SS сферическая волна // пройдет расстояние О2A2, причем 02А'2 + 02A2 = О1А1. Точно так же будем иметь: 03А'3 + 03A3 = О1А1 и т. д. Вследствие этого элементарные сфе­рические волны /, //, ///, IV, . будут иметь общую касательную поверхность Е', которая касается элементарных волн /, //, ///, IV, . в точках A1, А2, А'3, A4', . . Эта общая касатель­ная поверхность и будет представлять поверхность отраженной световой волны. Из геометрических соотношений нетрудно пока­зать, что угол падения I равен углу отражения I ', луч падающий и отраженный находятся в одной плоскости с перпендикуляром, опущенным на поверхность раздела в точке падения.

Если отражение происходит от кривых поверхностей, то закон отражения в той форме, в которой он здесь сформулирован, приме­няется к бесконечно малым участкам поверхности, которые могут приниматься с очень большой степенью приближения за плоские. Практическое применение этого закона будет сделано в приложении к сферическим зеркалам.

При отражении света на границах раздела двух сред всегда имеет место неполное отражение, так как какое-то количество света проходит в среду, от границы с которой и происходит отражение. Если эта среда слабо поглощает, то частично прошедший свет рас­пространяется в ней на большие расстояния. В случае поглощаю­щей среды проникший в нее свет быстро поглощается, а его энергия обычно происходит по внутреннюю энергию среды. Возможны и дру­гие превращении световой энергии, проникшей во вторую среду.

Введем обозначения: R — коэффициент отражения; А — коэф­фициент, определяющий поглощение света средой после его про­никновения в псе (среда полностью поглощает прошедшее в нее излучение), тогда

R+A=1

Величины R и А могут иметь самые различные значения. R. доста­точно велико у полированных поверхностей металлов или у метал­лических пленок, нанесенных на полированные поверхности ди­электриков (у серебра в видимой и инфракрасной области. Рассмотрим теперь явление преломления света. Оно происходит на границе раздела двух сред. При прохождении через границу луч света испытывает скачкообразное изменение направления рас­пространения. Это явление и называется преломлением света. На­ряду с этим наблюдаются явления так называемой рефракции, т. е. плавного изменения направления распространения, когда в среде имеет место градиент показателя преломления .

Преломление света подчиняется следующему закону: отношение синуса угла падения к синусу угла преломления равно отношению абсолютных показателей преломления второй и первой среды; лучи падающий и преломленный лежат в одной плоскости с перпендикуляром, опущенным на поверхность раздела в точке падения, Математически закон преломления записывается в виде:

sin i n 2

----- = ---

sin i n 1

где I — угол падения световых лучей на границу раздела двух сред с абсолютными показателями преломления n1 и n2 ; I' — угол преломления; N — нормаль к поверхности раздела. Величину

n2

n1,2=------

n1

 

 
Перейти на страницу: 1 2 3 4 5 6 7

 

Статистика

Ракурс в историю

История открытий в области строения атомного ядра

Изучение атомного ядра вынуждает заниматься элементарными частицами. Причина этого ясна: в ядрах атомов частиц так мало, что свойства каждой из них в отдельности не усредняются, а, напротив, играют определяющую роль.
История открытия закона Ома

Закон Ома устанавливает зависимость между силой тока I в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника.
История открытия основных элементарных частиц
Элементарные частицы в точном значении этого термина — первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя.