(a) , (b) ,
(c) , (d) ; (9)
либо электрическое поле с компонентами и
(a) , (b) ,
(c) , (d) ; (10)
либо, наконец, магнитное поле с компонентами и .
(a) , (b) ,
(c) , (d) . (11)
Как и следовало ожидать, из этих новых систем электродинамических уравнений аналогично выводу формулы (8) непосредственно получаем соотношения баланса:
для потока момента ЭМ импульса из уравнений системы (9)
(12)
для потока электрической энергии из уравнений системы (10)
(13)
и, наконец, для потока магнитной энергии из уравнений системы (11)
.
(14)
Поскольку дивергенция по определению есть объемная плотность потока векторного поля в данной точке, то соотношения баланса (8) и (12) - (14) показывают, что наличие (соответственно, изменение) определенной величины энергии или момента импульса в рассматриваемой точке невозможно в отрыве от окружающего пространства, без взаимодействия с ним посредством потоковой связи извне. Существенно, что это не является чем-то специфическим или необычным. Вот, например, тривиально наглядная ситуация: растянутая руками пружина, где ее внутренняя энергия упругой деформации создается и существует только за счет взаимодействия с окружением (действия рук). Итак, именно соотношения баланса, являющиеся следствием систем уравнений (7) и (9) - (11), однозначно иллюстрируют реальность корпускулярно-полевого дуализма характеристик материи, использование концепции которого позволило построить систему электродинамических уравнений (4) первичной функциональной взаимосвязи теперь уже конкретно компонент поля электромагнитного векторного потенциала и электромагнитного поля, тем самым поднять на новый концептуальный уровень физические представления полевой теории классического электромагнетизма.
Таким образом, аргументированно показано, что в Природе объективно существует весьма сложное и необычное с точки зрения традиционных представлений четырехвекторное вихревое поле в виде совокупности функционально неразрывно связанных между собой вихрево-полевых компонент ,
и , . Относительно наблюдения его физических проявлений такое поле реализуется четверкой составляющих его электродинамических полей из пар вышеуказанных компонент. Здесь поле электромагнитного векторного потенциала с компонентами
и описывается системой уравнений (9),
электромагнитное поле с и - системой (7), электрическое поле с и - системой (10), наконец, магнитное поле с и - системой (11). Причем такие структурные образования из двух векторных взаимно ортогональных полевых компонент делают принципиально возможным перемещение в пространстве конкретного электродинамического поля в виде потока соответствующей физической величины (см. соотношения (8), (12) - (14)). Подробно характеристики и специфика распространения волн таких полей рассмотрены, например, в работе [5].
Как видим, описывающие все эти поля электродинамические соотношения (4) объективно являются первичными основополагающими уравнениями современной полевой теории электромагнетизма, которые с их следствиями: системами уравнений (7) и (9) - (11) представляют фундамент классической электродинамики. Заметим в этой связи, что методически серьезных проблем не должно возникнуть, если обсуждаемое здесь реальное электромагнитное поле сохранит за собой
Перейти на страницу: 2 3 4 5 6 7 8
|